Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(18x^2-36xy+18x^2-72z^2\)
\(=36x^2-36xy-72z^2\)
\(=36\left(x^2-xy-2z^2\right)\)
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)
Bài 2:
Sửa đề: \(x^3-3x^2-10x=0\)
\(\Leftrightarrow x\left(x^2-3x-10\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-2\end{matrix}\right.\)
\(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)
Dễ thấy \(x^2+1>0\); \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) nên ta không thể phân tích thêm được nữa.
Vậy \(x^4+x^3+2x^2+x+1=\left(x^2+1\right)\left(x^2+x+1\right)\).