Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
2) \(=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left[\left(x+1\right)^2+\left(x+1\right).2y+4y^2\right]\)
\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)Đến đây bạn phân tích tiếp nha
CHÚC BẠN HỌC TỐT
T I C K ủng hộ nha
\(x^2-6xy+9y^2=x^2-2.\left[x.\left(3y\right)\right]+\left(3y\right)^2\)
\(=\left(x-3y\right)^2\)
P= 125x^3-8y^3
=5^3x^3-2^3y^3
=(5x)^3-(2y)^3
=(5x-2y)(25x^2+10xy+4y^2)
P=4x(x-2y)+8y(2y-x)
=4x(x-2y)-8y(x-2y)
=(4x-8y)(x-2y)
=4(x-2y)(x-2y)
=4(x-2y)^2
(2x+1)^2-(x-1)^2=(2x+1-x+1)(2x+1+x-1)
=(x+2)3x
K NHA!
Ta có:
\(x^3+2x^2+x+2\)
\(=x^2\left(x+2\right)+\left(x+2\right)\)
\(=\left(x^2+1\right)\left(x+2\right)\)
\(a.x^3+3x^2+4x+2\)
\(=x^3+x^2+2x^2+2x+2\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+2\right)\)
\(b.6x^4-x^3-7x^2+x+1\)
\(=6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1\)
\(=6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(6x^3+5x^2-2x-1\right)\)
\(=\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)\)
\(=\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[3x\left(2x-1\right)+\left(2x-1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)\)
k giùm cái cho đỡ buồn!
( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) - 24
= ( x2 + 7x + 10 ) ( x2 + 7x + 12 ) - 24
Đặt x2 + 7x + 10 = y
Ta có :
y2 + 2y - 24 = ( y - 4 ) ( y + 6 ) = ( x2 + 7x + 6 ) ( x2 + 7x + 16 )
= ( x + 1 ) ( x + 6 ) ( x2 + 7x + 16 )
Đặt x2+7x+10=t
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=t\left(t+2\right)-24=t^2+2t-24\)
\(=\left(t^2+2t+1\right)-25=\left(t+1\right)^2-5^2=\left(t-4\right)\left(t+6\right)\)=(x2+7x+6)(x2+7x+16)
=(x2+x+6x+6)(x2+7x+16)=[x(x+1)+6(x+1)](x2+7x+16)=(x+1)(x+6)(x2+7x+16)
\(x^4+9\)
\(=\left(x^2\right)^2+2.x^2.3+3^2-2.x^2.3\)
\(=\left(x^2\right)^2+6x^2+3^2-6x^2\)
\(=\left(x^2+3\right)^2-\left(\sqrt{6}x\right)^2\)
\(=\left(x^2+3-\sqrt{6}x\right)\left(x^2+3+\sqrt{6}x\right)\)
\(=x\left(x-4\right)+5\left(x-4\right)=\left(x+5\right)\left(x-4\right)\)
\(P=x^4-64x=x\left(x^3-4^3\right)=x\left(x-4\right)\left(x^2+4x+16\right)\)