K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: =5(2x+3y)

d: =(x+1-y)(x+1+y)

8 tháng 1 2022

a) \(=5x\left(x-2\right)\)

b) \(=\left(2x\right)^2-2x.2+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)

8 tháng 1 2022

1/
a) 3x2(2x−1)
= 6x3-3x2
2/
a) \(5x^2-10x\)
\(5x\left(x-2\right)\)
b) \(4x^2-y^2-4x+1\)
\(4x^2-4x+1-y^2\)
\(\left(2x-1\right)^2-y^2\)
\(\left(2x-1-y\right)\left(2x-1+y\right)\)

26 tháng 7 2018

a,  x2+2xy+y2+2x+2y-15

<=> (x+y )2+2(x+y)+1-16

Đặt x+y =a

<=> a2+2a+1-42

<=> (a+1)2-42

<=> (a+5)(a-3) =>( x+y+5)(x+y-3)

b, x2-4xy+4y2-2x-4y-35

<=> (x-2y)2-2(x-2y)+1-36

Đặt (x-2y)  =b 

=> b2-2b+1-62

<=> (b-1)2-62

<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)

c, 

26 tháng 7 2018

a,A= x^2+2xy+y^2+2x+2y-15

= (x+y)^2+(x+y)-15

Đặt x+y=a, ta có:

A=a^2+2a-15

  =a^2+2a+1-16

  =(a+1)^2-4^2

  =(a+1+4)(a+1-4)

  =(a+5)(a-3)

Thay a=x+y, ta có: A=(x+y+5)(x+y-3).

29 tháng 9 2016

a, x^2 + 5x +4

= x^2 + 1x + 4x + 4

= (x^2 + 1x) + (4x + 4)

= x ( x + 1 ) + 4 ( x + 1 )

= (x + 1) (x + 4)

b, x^2 - 6x + 5

= x^2 - 1x - 5x + 5

= (x^2 - 1x) - (5x - 5)

= x (x - 1) - 5 (x - 1)

= (x - 1) (x - 5)

c, x^2 + 7x + 12

= x^2 + 3x + 4x + 12 

= (x^2 + 3x) + (4x + 12)

= x (x + 3) + 4 (x + 3)

= (x + 3) (x + 4)

d, 2x^2 - 5x + 3

= 2^x2 - 2x - 3x + 3

= 2x (x - 1) - 3 (x - 1)

= (x-1) (2x - 3)

e, 7x  - 3x^2 - 4

= 3x + 4x - 3x^2 - 4

= (3x - 3x^2) + (4x - 4)

= 3x (1 - x) + 4 (x - 1)

= 3x (1-x) - 4 (1 - x)

= (1 - x) (3x - 4)

f, x^2 - 10x + 16

= x^2 - 2x - 8x + 16

= (x^2 - 2x) - (8x - 16)

= x (x - 2) - 8 (x - 2)

= (x - 2) (x - 8)

29 tháng 9 2016

a, (x+1)(x+4)

b,(x-5)(x-1)

c,(x+3)(x+4)

d,(2x-3)(x-1)

e,(-3x+4)(x-1)

f, (x-8)(x-2)

26 tháng 8 2017

Áp dụng hàm đẳng thức của lớp 8 là ra.

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><