K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

c: \(x^4+x^3-4x^2+x+1\)

\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)

\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)

\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)

3 tháng 2 2017

8x2-23x-3=8x2-24x+x-3

=8x(x-3)+(x-3)

=(x-3)(8x+1)

\(8x^2-23x-3=8x^2+x-24x-3\)

                            \(=\left(8x^2+x\right)-\left(24x+3\right)\)

                             \(=x\left(8x+1\right)-3\left(8x+1\right)\)

                            \(=\left(8x+1\right)\left(x-3\right)\)

26 tháng 8 2020

Ta có: \(-8x^2+23x+3\)

\(=\left(-8x^2+24x\right)-\left(x-3\right)\)

\(=-8x\left(x-3\right)-\left(x-3\right)\)

\(=\left(-8x-1\right)\left(x-3\right)\)

\(=\left(3-x\right)\left(8x+1\right)\)

26 tháng 8 2020

\(-8x^2+23x+3\)

\(=-\left(8x^2-23x-3\right)\)

\(=-\left(8x^2-24x+x-3\right)\)

\(=-\left[8x\left(x-3\right)+\left(x-3\right)\right]\)

\(=-\left(8x+1\right)\left(x-3\right)\)

3 tháng 10 2021

\(9a^3-13a+6=\left(9a^3-6a^2\right)+\left(6a^2-4a\right)-\left(9a-6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

3 tháng 10 2021

\(x^4-4x^3+8x+3=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(5x^2+5x\right)+\left(3x+3\right)=x^3\left(x+1\right)-5x^2\left(x+1\right)+5x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x^3-5x^2+5x+3\right)=\left(x+1\right)\left[\left(x^3-3x^2\right)-\left(2x^2-6x\right)-\left(x-3\right)\right]=\left(x+1\right)\left(x-3\right)\left(x^2-2x-1\right)\)

20 tháng 9 2015

=x3+3x2+3x+1+27x3

=(x+1)3 +(3x)3

=(x+1+3x) ( (x+1)2-(x+1).3x+(3x)2)

=(4x+1) (x2+2x+1-3x2-3x+9x2)

=(4x+1)(7x2-x+1)

8 tháng 12 2018

\(A=x^3+9x^2+23x+15=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+8x+15\right)=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)⋮16\)

b, Nếu x là số chẵn thì A là số lẻ nên không chia hết cho 16

- Nếu x là số lẻ thì đặt x = 2k + 1 \(\left(k\in Z\right)\)

Ta có: \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)=\left(2k+1+1\right)\left(2k+1+3\right)\left(2k+1+5\right)\)

\(=\left(2k+2\right)\left(2k+4\right)\left(2k+6\right)=8\left(k+1\right)\left(k+2\right)\left(k+3\right)\)

Vì k + 1, k + 2 và k + 3 là 3 số nguyên liên tiếp nên 

\(\left(k+1\right)\left(k+2\right)\left(k+3\right)⋮2\Rightarrow A=8\left(k+1\right)\left(k+2\right)\left(k+3\right)⋮16\)

Vậy với x là số lẻ \(\left(x\in Z\right)\) thì \(A⋮16\)

3 tháng 8 2015

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

1 tháng 8 2021

X^2-6+8