K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

24 tháng 12 2017

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)

I. Giải pt: \(x^2-4x-2\sqrt{2x-1}+1=0\) II. Giải hệ phương trình 1. (x - y)^2 - (x - y) = 6 và 2(x^2 + y^2) = 5xy Giải hệ phương trình 2: 13) xy - 2x - y + 2 = 0; 3x + y = 8 14) (x + y)^2 - 4(x + y) = 12; (x - y)^2 - 2(x - y) = 3 15) 3/x - 1/y = 7; 2/x - 1/y = 8 16) 1/x + 1/y = 16; 1/y + 1/z = 20; 1/z + 1/x = 18 17) \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\) 18) xy/x + y = 8/3; yz/y + z = 12/5; zx/x + z = 24/7 19)...
Đọc tiếp

I. Giải pt: \(x^2-4x-2\sqrt{2x-1}+1=0\)

II.

Giải hệ phương trình 1. (x - y)^2 - (x - y) = 6 và 2(x^2 + y^2) = 5xy

Giải hệ phương trình 2:

13) xy - 2x - y + 2 = 0; 3x + y = 8

14) (x + y)^2 - 4(x + y) = 12; (x - y)^2 - 2(x - y) = 3

15) 3/x - 1/y = 7; 2/x - 1/y = 8

16) 1/x + 1/y = 16; 1/y + 1/z = 20; 1/z + 1/x = 18

17) \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\)

18) xy/x + y = 8/3; yz/y + z = 12/5; zx/x + z = 24/7

19) \(\left\{{}\begin{matrix}\dfrac{4}{z-1}+2x=7\\5x-3y=3\\\dfrac{2}{z-1}+y=4,5\end{matrix}\right.\)

20) x^2 + xy + xz = 2; y^2 + yz + xy = 3; z^2 + xz + yz = 47

20) 3xy - x - y = 3; 3yz - y - z = 13; 3zx - z- x = 5

III.

Bài 1, Cho phương trình: x^2 -(m-1)*x-m^2+m-2=0
1, Tìm m để pt có nghiệm x=1
2, Giải pt khi m=2
Bài 2: Giải hệ 3*x+ 4*y =7 và 4*x- y=3

IV. Hai tổ học sinh cũng là một công việc thì sau 1 giờ 30 phút sẽ xong, nếu tổ 1 làm 20 phút và tổ 2 làm 15 phút được 1/5 công việc. Hỏi mỗi tổ làm riêng xong việc trong bao lâu?

4
12 tháng 6 2018

@Akai Haruma

12 tháng 6 2018

@Hắc Hường

19 tháng 11 2021

\(a,=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\\ b,=\dfrac{1}{3}x\left(y+3xz+3z\right)\\ c,=2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)

\(d,=x^2\left(\dfrac{2}{5}+5x+y\right)\\ e,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ f,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ g,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)

3 tháng 6 2017

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+\frac{2.9}{4\left(x+y+z\right)}\)

\(=5.\left(\frac{3}{4}\right)^2+\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{2.9}{\frac{4.3}{4}}=9\)

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)

14 tháng 1 2016

TH1:x,y,z=0

TH2:x=2\(\frac{3}{10}\)

y=3\(\frac{5}{6}\)

z=11\(\frac{1}{2}\)

14 tháng 1 2016

giải ra cơ kết quả mik cx có mà hình như KQ sai rồi