Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3+10x-25\)
\(=x^4+5x^2+2x^3+10x-5x^2-25\)
\(=\left(x^2+5\right)\left(x^2+2x-5\right)\)
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
Lời giải:
a.
$x^4+10x^3+26x^2+10x+1$
$=(x^4+10x^3+25x^2)+x^2+10x+1$
$=(x^2+5x)^2+2(x^2+5x)+1-x^2$
$=(x^2+5x+1)^2-x^2=(x^2+5x+1-x)(x^2+5x+1+x)$
$=(x^2+4x+1)(x^2+6x+1)$
b.
$x^4+x^3-4x^2+x+1$
$=(x^4-x^2)+(x^3-x^2)+(x-x^2)+(1-x^2)$
$=x^2(x-1)(x+1)+x^2(x-1)-x(x-1)-(x-1)(x+1)$
$=(x-1)[x^2(x+1)+x^2-x-(x+1)]$
$=(x-1)(x^3+2x^2-2x-1)$
$=(x-1)[(x^3-1)+(2x^2-2x)]=(x-1)[(x-1)(x^2+x+1)+2x(x-1)]$
$=(x-1)(x-1)(x^2+x+1+2x)=(x-1)^2(x^2+3x+1)$
Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)
Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)
Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)
Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)
Giả sử:
\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)
Ta có:
\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)
\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)
1) \(x^4-2x^3+3x^2-2x+1\)
\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)^2\)
2) \(x^4-4x^3+10x^2-12x+9\)
\(=x^2\left(x^2-2x+3\right)-2x\left(x^2-2x+3\right)+3\left(x^2-2x+3\right)\)
\(=\left(x^2-2x+3\right)^2\)
1) =\(-3x^4+9x^3+11x^3-33x^2-2x^2+6x-16x+48\)
=\(-3x^3\left(x-3\right)+11x^2\left(x-3\right)-2x\left(x-3\right)-16\left(x-3\right)\)
= \(\left(x-3\right)\left(-3x^3+11x^2-2x-16\right)\)
= \(\left(x-3\right)\left(-3x^3+6x^2+5x^2-10x+8x-16\right)\)
=\(\left(x-3\right)\left(-3x^2\left(x-2\right)+5x\left(x-2\right)+8\left(x-2\right)\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(-3x^2+5x+8\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(x-\frac{8}{3}\right)\left(x+1\right)\)
Ý b lm theo ý tưởng tương tự nha bn :D
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)
\(=x^8+2x^5-2x^4+x^2-2x-100+10x^5+25x^2-10x+1\)
\(=x^8+12x^5-2x^4+36x^2-12x-99\)
\(=x^8+6x^5+9x^4+6x^5+36x^2+54x-11x^4-66x-99\)
\(=x^4\left(x^4+6x+9\right)+6x\left(x^4+6x+9\right)-11\left(x^4+6x+9\right)\)
\(=\left(x^4+6x+9\right)\left(x^4+6x-11\right)\)
Ta có :
đặt x bình ra ngoài
nhóm x^2 và 4/x^2 ; x và 2/x
xong đặt ẩn phụ là ra nhé