K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

x^2(x-3)+12-4x = x^2(x-3)+4(3-x) = x^2(x-3)-4(x-3) = (x-3)(x^2-4) = (x-3)(x-2)(x+2) 

n^3-n=n(n^2-1) = n(n+1)(n-1)

Ta thấy tích trên là tích 3 số tự nhiên liên tiếp luôn chia hết cho 6

Vậy n^3-n luôn chia hết cho 6

 

11 tháng 10 2021

\(x^3-9x^2+26x-24\)

\(=x^3-4x^2-5x^2+20x+6x-24\)

\(=\left(x-4\right)\left(x^2-5x+6\right)\)

\(=\left(x-4\right)\left(x-2\right)\left(x-3\right)\)

Đặt \(m=3k+r\)với \(0\le r\le2\)        \(n=3t+s\)với \(0\le s\le2\)

\(\Rightarrow x^m+x^n+1=x^{3k+r}+x^{3t+s}+1=x^{3k}+x^r-x^r+x^{3t}x^s-x^s+x^r+x^s+1\)

\(=x^r\left(x^{3k}-1\right)+x^s\left(x^{3t}-1\right)+x^r+x^s+1\)

Ta thấy : \(\left(x^{3k}-1\right)⋮\left(x^2+x+1\right)\)và \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\)

Vậy : \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)với \(0\le r;s\le2\)

\(\Leftrightarrow\hept{\begin{cases}r=2\\r=1\end{cases}}\)\(\hept{\begin{cases}s=1\\s=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m=3k+2\\m=3k+1\end{cases}}\)\(\hept{\begin{cases}n=3t+1\\n=3t+2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\\mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\end{cases}}\)

\(\Leftrightarrow\left(mn-2\right)⋮3\)Điều phải chứng minh 

Áp dụng : \(m=7;n=2\Rightarrow mn-2=12:3\)

\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)

\(\Rightarrow\left(x^7+x^2+1\right):\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)

29 tháng 10 2021

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)