Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)
\(=\left(x-5y\right)\left(5x-y\right)\)
`9(x-y)^2-4(x+y)^2`
`=[3(x-y)]^2-[2(x+y)]^2`
`=(3x-3y)^2-(2x+2y)^2`
`=(3x-3y+2x+2y)(3x-3y-2x-2y)`
`=(5x-y)(x-5y)`
\(9\left(x-y\right)^2-4\left(x+y\right)^2\\ =\left[3\left(x-y\right)\right]^2-\left[2\left(x+y\right)\right]^2\\ =\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\)
Bài làm:
Ta có: \(9\left(x-y\right)^2-4\left(x+y\right)^2=\left[3\left(x-y\right)\right]^2-\left[2\left(x+y\right)\right]^2\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)
Học tốt!!!!
Ta có :
\(9\left(x-y\right)^2-4\left(x+y\right)^2=9x^2-18xy+9y^2-4x^2-8xy-4y^2\)
\(=5x^2-26xy+5y^2==\left(5x-y\right)\left(x-5y\right)\)
(x^10+y^10)(x^2+y^2)-(x^8+y^8)(x^4+y^4)
=x^12+x^10y^2+y^10x^2+y^12-x^12-x^8y^4-x^4y^8-y^12
=x^10y^2+y^10x^2-x^8y^4-x^4y^8
=x^2y^2(x^8+y^8-x^6y^2-x^2y^6)
=x^2y^2[x^6(x^2-y^2)+y^6(y^2-x^2)]
=x^2y^2[x^6(x-y)(x+y)-y^6(x-y)(x+y)]
=x^2y^2(x^6-y^6)(x-y)(x+y)
=x^2y^2(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)(x-y)(x+y)
=x^2y^2(x-y)^2(x+y)^2(x^2+xy+y^2)(x^2-xy+y^2)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
x^2+4x-2xy-4y+y^2=(x^2-2xy+y^2)+(4x-4y)
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)