Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+5\right)^2\)\(-\left(x-9\right)^2\)
=\(\left(2x+5+x-9\right).\left(2x+5-x+9\right)\)
=\(\left(3x-4\right).\left(x+14\right)\)
1/ \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow9x^2-6x-35=0\)
\(\Leftrightarrow\left(2x-1\right)^2-36=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+6\right)=0\)
2/ \(\left(3x+5\right)^2-4x^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x+5\right)=0\)
3/ \(25x^2-\left(4x-3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(9x-3\right)=0\)
1) ( 9x2 - 25 ) - ( 6x - 10 ) = 0
\(\Leftrightarrow\) [ ( 3x)2 - 52 ] - 2.( 3x + 5 ) = 0
\(\Leftrightarrow\)( 3x - 5 ).( 3x + 5 ) - 2.( 3x - 5 ) = 0
\(\Leftrightarrow\) ( 3x + 5 ).( 3x + 5 - 2 ) = 0
\(\Leftrightarrow\)( 3x + 5 ).( 3x + 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+5=0\\3x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-5\\3x=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-5}{3}\\x=-1\end{cases}}\)
Vậy x = \(\frac{-5}{3}\) , x = -1
2) ( 3x + 5 )2 - 4x2 = 0
\(\Leftrightarrow\) ( 3x + 5 - 2x ).( 3x + 5 + 2x ) = 0
\(\Leftrightarrow\)( x + 5 ).( 5x + 5 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+5=0\\5x+5=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-5\\x=-1\end{cases}}\)
Vậy x = -5 , x = -1
3) 25x2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\)( 5x )2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\) ( 5x - 4x + 3 ).(5x + 4x - 3 ) = 0
\(\Leftrightarrow\)( x + 3 ).( 9x - 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\9x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\9x=3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)
Vậy x = 3 , x = \(\frac{1}{3}\)
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
a: \(x^3-2x+4\)
\(=x^3+2x^2-2x^2-4x+2x+4\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
b: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)
\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)
Vạy ...
phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\((4x-1)^2-(5-3x)^2=0\)
\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)
\(\Leftrightarrow(x-6)(x+6)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy : ...