Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left(c-a\right)-c^2\left[\left(b-c\right)+\left(c-a\right)\right]\)
\(=a^2\left(b-c\right)+b^2\left(c-a\right)-c^2\left(b-c\right)-c^2\left(c-a\right)\)
\(=\left(b-c\right)\left(a^2-c^2\right)+\left(c-a\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-c\right)\left(a+c\right)+\left(c-a\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a-c\right)\left(a+c-b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
dài quá !!!như bạn tìm cách gộp vào là được.cố lên!!!
\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2+b^2+a^2b^2+1=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)
\(x^2-xy\left(a+b\right)+aby^2=x^2-xya-xyb+aby^2=x\left(x-ya\right)-yb\left(x-ya\right)=\left(x-ya\right)\left(x-yb\right)\)
\(x^2-xy\left(a+b\right)+aby^2\)
\(=x^2-axy-bxy+aby^2\)
\(=x\left(x-ay\right)-by\left(x-ay\right)\)
\(=\left(x-ay\right)\left(x-by\right)\)
a) x4 - y4
= ( x2 - y2 ) ( x2 + y2 )
= ( x - y ) ( x + y ( x2 + y2 )
b) ( a - b ) 3 - ( a - b ) 3
= ( a - b ) 2 ( a - b - a + b )
c) ( a2 + 2ab + b2 ) + ( a + b )3
= ( a + b )2 + ( a +b ) 3
= ( a + b ) 2 ( a + b + 1 )
TL:
\(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)
\(=\left(b^2+c^2-a^2+2bc\right)\left(b^2+c^2-a^2-2bc\right)\)
Đáp án:
Giải thích các bước giải:
a, phân tích thành nhân tử
M = (a^2 + b^2 - c^2)^2 - 4a^2b^2
= (a^2 + b^2 - c^2 - 2ab)(a^2 + b^2 - c^2 + 2ab)
= [(a-b)^2 - c^2][(a+b)^2 - c^2]
= (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b. Nếu a,b,c là số đo độ dài 3 cạnh của tam giác thì ta có:
a-b < c => a-b-c < 0
a+c > b => a+b-b > 0
a+b > c => a+b-c > 0
a+b+c > 0
Vì tích của 1 số âm với 3 số dương luôn nhận được kết quả là số âm
=> (a-b-c)(a-b+c)(a+b-c)(a+b+c) < 0
Vậy chứng tỏ a,b,c là số đo độ dài của tam giác thì M < 0
\(B=a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(B=ab^2-ac^2+bc^2-a^2b+a^2c-b^2c\)
\(B=\left(ab^2-a^2b\right)-\left(ac^2-c^2b\right)+\left(a^2c-b^2c\right)\)
\(B=-ab\left(a-b\right)-c^2\left(a-b\right)+c\left(a-b\right)\left(a+b\right)\)
\(B=\left(a-b\right)\left(-ab-c^2+ac+bc\right)\)
\(B=\left(a-b\right)\left[a\left(c-b\right)-c\left(c-b\right)\right]\)
\(B=\left(a-b\right)\left(c-b\right)\left(a-c\right)\)