Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a/\)
\(4x-4y+x^2-2xy+y^2\)
\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
\(b/\)
\(x^4-4x^3-8x^2+8x\)
\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)
\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x-4\right)\)
\(d/\)
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)
\(e/\)(Xem lại đề)
\(x^4+x^3+x^2+2x+1\)
\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^3+x+1\right)\)
\(f/\)
\(x^3-4x^2+4x-1\)
\(=x\left(x^2-4x+4\right)-1^2\)
\(=x\left(x-2\right)^2-1\)
\(=[\sqrt{x}\left(x-2\right)]^2-1\)
\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)
\(c/\)
\(x^3+x^2-4x-4\)
\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
a 4x -4y +(x-y)^2
=4(x-y)+(x-y).(x-y)
=(x-y).(4+x-y)
c x^2(x+1)-4(x+1)
(x+1).(x^2-4)
d x^4-(x^2-2x+1)
=x^4-(x-1)^2
=x^2(x-x+1)(x-x-1)
MIK KO BIT DUNG HAY KO CON B THI MIK KO BIET LAM
Câu b dễ thôi
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x+2\right)\left(x^2-6x+4\right)\)
a) \(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
b) \(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
c) \(x^4-2x^3+x^2-2x=x^3\left(x-2\right)+x\left(x-2\right)=x\left(x-2\right)\left(x^2-1\right)=x\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(x^2-4y^2+2x+4y=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(x-2y+2\right)\)
a) x2 + xy + y - 1 = (x2 - 1) + (xy + y) = (x - 1)(x + 1) + y(x + 1) = (x + 1)(x + y - 1)
b) 4 - x2 + 2xy - y2 = 4 - (x2 - 2xy + y2) = 4 - (x - y)2 = (x - y + 2)(4 - x + y)
c) 8x2 - 18y2 = 2(4x2 - 9y2) = 2[(2x)2 - (3y)2] = 2(2x - 3y)(2x + 3y)
d) 8x3 - 4x2 - 6xy - 9y2 - 27y3
= (8x3 - 27y3) - (4x2 + 6xy + 9y2)
= (2x - 3y)(4x2 + 6xy + 9y2) - (4x2 + 6xy + 9y2)
= (2x - 3y - 1)(4x2 + 6xy + 9y2)
e) 4x2 - x - 3 = 4x2 - 4x + 3x - 3 = 4x(x - 1) + 3(x - 1) = (x - 1)(4x + 3)
f) 4x2 - 8x + 3 = 4x2 - 2x - 6x + 3 = 2x(2x - 1) - 3(2x - 1) = (2x - 3)(2x - 1)
Bài 4 :
a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)
b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)
d)
\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
e) Trùng câu d
f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)
Bài 5:
a) \(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy........
c) \(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Vậy
d) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ........
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a) \(4x-4y+x^2-2xy+y^2\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
b) \(x^4-4x^3-8x^2+8x\)
\(=x^4+2x^3-6x^3-12x^2+4x^2+8x\)
\(=x^3\left(x+2\right)-6x^2\left(x+2\right)+4x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3-6x^2+4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x+4\right)\)
c) \(x^3+x^2-4x-4\)
\(=x^3-2x^2+3x^2-6x+2x-4\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-2\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)
d) \(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2\right)^2-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
e)Sửa đề \(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-1\right)\)
f) \(x^3-4x^2+4x-1\)
\(=x^3-x^2-3x^2+3x+x-1\)
\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-3x+1\right)\)