K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

toán lớp 8 mà bạn sao lại lớp 7

17 tháng 10 2016

mình nhâm hàng :v 

`@` `\text {Đáp án}`

`\downarrow`

`a,`

`A(x)+B(x)=`\(\left(3x^4-\dfrac{3}{4}x^3+2x^2-3\right)+8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}\)

`= 3x^4-3/4x^3+2x^2-3+8x^4+1/5x^3-9x+2/5`

`= (3x^4+8x^4)+(-3/4x^3+1/5x^3)+2x^2-9x+(-3+2/5)`

`= 11x^4-11/20x^3+2x^2-9x-13/5`

`b,`

`A(x)-B(x)=`\(3x^4-\dfrac{3}{4}x^3+2x^2-3-\left(8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}\right)\)

`=3x^4-3/4x^3+2x^2-3-8x^4-1/5x^3+9x-2/5`

`= (3x^4-8x^4)+(-3/4x^3-1/5x^3)+2x^2+9x+(-3-2/5)`

`= -5x^4 -19/20x^3+2x^2+9x-17/5`

`c,`

`B(x)-A(x)=`\(8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}-\left(3x^4-\dfrac{3}{4}x^3+2x^2-3\right)\)

`= 8x^4+1/5x^3-9x+2/5 - 3x^4+3/4x^3-2x^2+3`

`= (8x^4-3x^4)+(1/5x^3-3/4x^3)-2x^2-9x+(2/5+3)`

`= 5x^4 + 19/20x^3 -2x^2 -9x+17/5`

a: A(x)+B(x)=11x^4-11/20x^3+2x^2-9x-13/5

b: A(x)-B(x)=-5x^4-19/20x^3+2x^2+9x-17/5

c: B(x)-A(x)=5x^4+19/20x^3-2x^2-9x+17/5

24 tháng 7 2020

Bài làm:

a) \(2x^2+7x+5=\left(2x^2+2x\right)+\left(5x+5\right)=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(2x+5\right)\left(x+1\right)\)

b) \(x^3-2x-4=\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)

c) \(x^2+4x+3=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

24 tháng 7 2020

2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = ( 2x2 + 2x ) + ( 5x + 5 ) = 2x( x + 1 ) + 5( x + 1 ) = ( 2x + 5 )( x + 1 )

x2 + 4x + 3 = x2 + x + 3x + 3 = ( x2 + x ) + ( 3x + 3 ) = x( x + 1 ) + 3( x + 1 ) = ( x + 3 )( x + 1 )

22 tháng 7 2019

\(4x^4-21x^2y^2+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

23 tháng 7 2019

\(x^5-5x^3+4x\)

\(=x\left(x^4-5x^2+4\right)\)

\(a,4x^4-21x^2y^2+y^4=\left(2x^2\right)^2+4x^2y^2+y^4-4x^2y^2-21x^2y^2\)

\(=\left(2x^2+y^2\right)^2-25x^2y^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

\(b,x^5-5x^3+4x=x\left(x^4-5x^2+4\right)\)

\(=x\left(x^4-4x^2-x^2+4\right)\)

\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

\(c,x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)

\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x^2+3x+3x+9\right)\)

\(=\left(x-1\right)\left[x\left(x+3\right)+3\left(x+3\right)\right]\)

\(=\left(x-1\right)\left(x+3\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

\(d,x^{16}+x^8-2=x^{16}+2x^8-x^8-2\)

\(=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)

\(=\left(x^8-1\right)\left(x^8+2\right)\)

11 tháng 10 2020

a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )

b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )

c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )

d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )

e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )

f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Lời giải:

Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)

Bậc của đa thức: 4

Hệ số cao nhất : -1

Hệ số tự do : -7

b) \(-x^4-5x^3-5x^2+5\)

Bậc của đa thức: 4

Hệ số cao nhất : -1

Hệ số tự do: 5

c) \(7x^2+3x-1\)

Bậc của đa thức: 2

Hệ số cao nhất: 7

Hệ tự do: -1

d) \(3x^4+9x^3-3x^2+5x+4\)

Bậc của đa thức: 4

Hệ số cao nhất: 3

Hệ số tự do: 4