K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

a)= ab (a + b) - bc [( a + b) - (a - c)] + ac (a - c)

= ab (a + b) - bc (a + b) + bc (a - c) +ac (a - c)

= b (a + b) (a - c) + c (a - c) (a + b)

= (a + b) (a - c) (b + c)

Y
15 tháng 6 2019

b) \(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[\left(a^2-b^2\right)+\left(c^2-a^2\right)\right]+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a^2-b^2\right)\left[\left(a+b\right)-\left(b+c\right)\right]+\left(c^2-a^2\right)\left[\left(c+a\right)-\left(b+c\right)\right]\)

\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)-\left(a-c\right)\left(a+c\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left[\left(a+b\right)-\left(a+c\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

1 tháng 10 2016

1) \(\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)

21 tháng 9 2016

a3(c - b2) + b3(a - c2) + c3(b - a2) + abc(abc - 1)

= a3c - a3b2 + ab3 - b3c2 + bc3 - a2c3 + a2b2c2 - abc

= a2b2c2 - b3c2 - (a2c3 - bc3) - (a3b2 - ab3) + (a3c - abc)

= b2c2(a2 - b) - c3(a2 - b) - ab2(a2 - b) + ac(a2 - b)

= (a2 - b)(b2c2 - c3 - ab2 + ac) = (a2 - b)[c2(b2 - c) - a(b2 - c)] = (a2 - b)(b2 - c)(c2 - a)

a: \(=ab\left(a+b\right)-bc\left(b+a\right)-bc\left(c-a\right)-ac\left(c-a\right)\)

\(=\left(a+b\right)\left(ab-bc\right)+\left(a-c\right)\left(bc-ac\right)\)

\(=\left(a+b\right)\cdot b\left(a-c\right)+\left(a-c\right)\cdot c\left(b-a\right)\)

\(=\left(a-c\right)\left(ab+b^2+cb-ac\right)\)

b: \(=ab^2+ac^2+bc^2+a^2b+a^2c+b^2c+2abc\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\)

\(=\left(a+b\right)\left(ab+c^2+ac+cb\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

d: \(=a^3\left(b-c\right)-b^3\left(b-c+a-b\right)+c^3\left(a-b\right)\)

\(=a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-b^2-bc-c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab-bc-c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\cdot\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)