K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1A. Phân tích các đa thức sau thành nhân tử:a) x3+2x;                                           b) 3x - 6y;c) 5(x + 3y)- 15x(x + 3y);               d) 3(x-y)- 5x(y-x).1B. Phân tích các đa thức sau thành nhân tử:a) 4x2 - 6x;                                         b) x3y - 2x2y2 + 5xy; c) 2x2(x +1) + 4x(x +1);               d) 2 x(y - 1) - 2 y(1 - y). 5                  52A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);b) x(y - x)3 - y(x - y)2 + xy(x -...
Đọc tiếp

1A. Phân tích các đa thức sau thành nhân tử:

a) x3+2x;                                           b) 3x - 6y;

c) 5(x + 3y)- 15x(x + 3y);               d) 3(x-y)- 5x(y-x).

1B. Phân tích các đa thức sau thành nhân tử:

a) 4x2 - 6x;                                         b) x3y - 2x2y2 + 5xy;

 

c) 2x2(x +1) + 4x(x +1);               d) 2 x(y - 1) - 2

 

y(1 - y).

 

5                  5

2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);

b) x(y - x)3 - y(x - y)2 + xy(x - y);

c) xy(x + y)- 2x - 2y;

d) x(x + y)2 - y(x + y)2 + y2 (x - y).

2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;

b) x(x- y)3 - y(y - x)2 - y2(x - y);

c) x2y-xy2 - 3x + 3y;

d) x(x + y)2 - y(x + y) 2 + xy - x 2 .

3

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

7 tháng 10 2021

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

NV
14 tháng 9 2021

\(=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)

\(=\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+c\left(a+b\right)+c^2\right]-3ab\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ac+bc\right)\)

Bài 1: 

a: \(4a^2-6b=2\left(2a^2-3b\right)\)

b: \(m^3n-2m^2n^2-mn\)

\(=mn\left(m^2-2mn-1\right)\)

2 tháng 10 2021

Bài 1:

a) \(4a^2-6b=2\left(a^2-3b\right)\)

b) \(=mn\left(m^2-2mn-1\right)\)

Bài 2:

a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)

b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)

6 tháng 8 2017

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ac+2bc+2ab-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

14 tháng 12 2022

`a)7x^3y^2+14x^2y^3+7xy^4`

`=7xy^2(x^2+2xy+y^2)`

`=7xy^2(x+y)^2`

______________________________________________

`b)x^2-xy+5x-5y`

`=x(x-y)+5(x-y)`

`=(x-y)(x+5)`

______________________________________________

`c)3x^2-6xy-12+3y^2`

`=3(x^2-2xy-4+y^2)`

`=3[(x-y)^2-4]`

`=3(x-y-2)(x-y+2)`

a)7x3y2+14x2y3+7xy4

=7xy2(x2+2xy+y2)

=7xy2(x+y)2

b)x2-xy + 5x - 5y

=x(x-y) + 5(x-y)

=(x-y) (x+5)

 

a: \(=\dfrac{2}{5}\left(xy-x-y^2+1\right)\)

\(=\dfrac{2}{5}\left[x\left(y-1\right)-\left(y-1\right)\left(y+1\right)\right]\)

\(=\dfrac{2}{5}\left(y-1\right)\left(x-y-1\right)\)

b: \(=x\left(x^2+2xy+y^2-9\right)\)

\(=x\left(x+y-3\right)\left(x+y+3\right)\)

2 tháng 4 2022

a) =25(xy−x−y2+1)

=25[x(y−1)−(y−1)(y+1)]

=25(y−1)(x−y−1)

b) =x(x2+2xy+y2−9)

3 tháng 12 2021

\(a,=6y\left(2x^2-3xy-5y^2\right)\\ =6y\left(2x^2+2xy-5xy-5y^2\right)\\ =6y\left(x+y\right)\left(2x-5y\right)\\ b,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ c,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)\\ =\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ d,=\left(a^2+3b\right)^2-1=\left(a^2+3b+1\right)\left(a^2+3b-1\right)\\ e,=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\\ =\left(2x-5\right)\left(2x+5-2x-7\right)\\ =-2\left(2x-5\right)\\ f,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ g,=x^3-x-6x-6\\ =x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\\ =\left(x+1\right)\left(x^2-x-6\right)\\ =\left(x+1\right)\left(x^2-3x+2x-6\right)\\ =\left(x+1\right)\left(x-3\right)\left(x+2\right)\\ l,=x^4+4x^2+4-4x^2\\ =\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\\ h,=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)

a: Ta có: \(x^5-x^3+x^2-1\)

\(=x^3\left(x^2-1\right)+\left(x^2-1\right)\)

\(=\left(x-1\right)\cdot\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

b: Ta có: \(5x^3-45x\)

\(=5x\left(x^2-9\right)\)

\(=5x\left(x-3\right)\left(x+3\right)\)

c: Ta có: \(16x^4y^2+2xy^5\)

\(=2xy^2\left(8x^3+y^3\right)\)

\(=2xy^2\cdot\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

d: Ta có: \(a^3-8+6a^2-12a\)

\(=\left(a-2\right)\left(a^2+2a+4\right)+6a\left(a-2\right)\)

\(=\left(a-2\right)\left(a^2+8a+4\right)\)

e: Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

21 tháng 12 2021

\(a,=2xy\left(2y-x\right)\\ b,=x^2\left(x-4\right)+5\left(x-4\right)=\left(x^2+5\right)\left(x-4\right)\\ c,=\left(x-y\right)\left(x^2-25\right)=\left(x-y\right)\left(x-5\right)\left(x+5\right)\)