K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

9 tháng 12 2021

a)x2-2x-4y2-4y

=x2-2x-4y2-4y+1-1

=(x2-2x+1)-(4y2+4y+1)

=(x-1)2-(2y+1)2

=(x-2y-2)(x+2y)

b)2x2+3x-5

=2x2-2x+5x-5

=2x(x-1)+5(x-1)

=(x-1)(2x+5)

 

 

23 tháng 10 2021

\(a,=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)=\left(x-2y\right)\left(x+2y-2\right)\\ b,=\left(x^2+3y\right)^2-1=\left(x^2+3y-1\right)\left(x^2+3y+1\right)\)

23 tháng 10 2021

\(b)x^4+6x^2y+9y^2-1\\=(x^4+6x^2y+9y^2)-1\\=(x^2+3y)^2-1\\=(x^2+3y-1)(x^2+3y+1)\\a) x^2-2x+4y^2+4y\\=(x^2-4y^2)-(2x-4y)\\=(x-2y)(x+2y)-2(x-2y)\\=(x-2y)(x+2y-2)\)

 Bài 1 (2,0 điểm). Thực hiện các phép tính:a) 2x2(3x – 5). b) (12x3y + 10x2y) : 2x2y.                                                               Bài 2 (1,5 điểm). Phân tích đa thức thành nhân tử:a) x2y + xy2. b) x2 – 2x + 1 – 4y2. c) x2 – 5x + 4.Bài 3 (1,0 điểm). Tìm x biết:a) x2 – x(x – 3) – 6 = 0. b) 5(x + 2) – x2 – 2x =Bài 5 (3,5 điểm). Cho °ABC, A= 90. Vẽ AH ^ BC tại H. Biết AB = 15cm, BC = 25cm.a) Tính AC và diện tích °ABC.b) Từ H vẽ HM ^ AB tại M,...
Đọc tiếp

 Bài 1 (2,0 điểm). Thực hiện các phép tính:

a) 2x2(3x – 5). b) (12x3y + 10x2y) : 2x2y.                                                               

Bài 2 (1,5 điểm). Phân tích đa thức thành nhân tử:

a) x2y + xy2. b) x2 – 2x + 1 – 4y2. c) x2 – 5x + 4.

Bài 3 (1,0 điểm). Tìm x biết:

a) x2 – x(x – 3) – 6 = 0. b) 5(x + 2) – x2 – 2x =

Bài 5 (3,5 điểm). Cho °ABC, A= 90. Vẽ AH ^ BC tại H. Biết AB = 15cm, BC = 25cm.

a) Tính AC và diện tích °ABC.

b) Từ H vẽ HM ^ AB tại M, HN ^ AC tại N. Chứng minh AMHN là hình chữ nhật.

c) Trên tia đối của tia AC lấy điểm D sao cho AD = AN. Chứng minh tứ giác ADMH là hình bình hành.

d) Gọi K là điểm đối xứng của B qua A. Gọi I, E lần luợt là trung điểm của AH và BH. Chứng minh CI ^ HK.

 

3
28 tháng 12 2021

mn giúp e ik mn

 

28 tháng 12 2021

\(a\text{)}x^2y+xy^2=xy\left(x+y\right)\)

\(b\text{)}x^2-2x+1=\left(x-1\right)^2\)

\(c\text{)}x^2-5x+4=\left(x-1\right)\left(x-4\right)\)

Bài 1.        Phân tích các đa thức sau thành nhân tử:a.      12x3y – 24x2y2 + 12xy3        b.      x2  - 2xy – x2  + 4y2c.      x2 – 2x - 4y2  + 1d.      x2 + 3x – 18 e.      x2 – 6 x +xy  - 6yf.       x2 + 2x + 1   - 16        g.      x2 – 2x -3h.      x2 - 8x +15 i.        2x2  + 2xy  - x - y j.       x2 -  4x + 4  -  25y2k.    x2 + 4x -12                         l.        x2 + 6x +8m.   ax – 2x - a2  +2an.      x2  - 6xy + 9y2   -25z2o.    x2 + x – 6  p.      x2  -7 x + 6q.      x3-...
Đọc tiếp

Bài 1.        Phân tích các đa thức sau thành nhân tử:

a.      12x3y – 24x2y2 + 12xy3        

b.      x2  - 2xy – x2  + 4y2

c.      x2 – 2x - 4y2  + 1

d.      x2 + 3x – 18 

e.      x2 – 6 x +xy  - 6y

f.       x2 + 2x + 1   - 16        

g.      x2 – 2x -3

h.      x2 - 8x +15 

i.        2x2  + 2xy  - x - y 

j.       x2 -  4x + 4  -  25y2

k.    x2 + 4x -12                         

l.        x2 + 6x +8

m.   ax – 2x - a2  +2a

n.      x2  - 6xy + 9y2   -25z2

o.    x2 + x – 6  

p.      x2  -7 x + 6

q.      x3- 3x2 + 3x -1   

r.      81 – x2 + 4xy – 4y2   

s.     x2 -5x -6 

t.       3x2 - 7x + 2

u.      3x2 - 3y2 - 12x – 12y  

v.      x2 +6x –y2 +9

w.    x2 - 8 x – 9

x.      x4 + 64

1
26 tháng 10 2021

b: \(=\left(x-y\right)^2-4y^2\)

\(=\left(x-y-2y\right)\left(x-y+2y\right)\)

\(=\left(x-3y\right)\left(x+y\right)\)

c: \(=x\left(x-6\right)+y\left(x-6\right)\)

\(=\left(x-6\right)\left(x+y\right)\)

1 tháng 10 2021

`a)x^3-8x^2+16x`

`=x(x^2-8x+16)`

`=x(x-4)^2`

`b)x^2+4y^2+2x-4y-4xy-24`

`=(x-2y)^2+2(x-2y)-24`

`=(x-2y)^2-4(x-2y)+6(x-2y)-24`

`=(x-2y-4)(x-2y+6)`

`c)x^4+x^3-x^2-2x-2`

`=x^4-2x^2+x^3-2x+x^2-2`

`=x^2(x^2-2)+x(x^2-2)+x^2-2`

`=(x^2-2)(x^2+x+1)`

26 tháng 12 2021

h: \(=\left(x+3\right)\cdot\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

14 tháng 10 2021

a) = (x - 4y)(x + 1)

b) = (x - 3y)^2 - 2^2

= (x - 3y - 2)(x - 3y + 2)

c) = x^2(x + 3) - 7x(x + 3) + 9(x + 3)

= (x + 3)(x^2 - 7x + 9)

14 tháng 10 2021

a: \(x^2-4xy+x-4y\)

\(=x\left(x-4y\right)+\left(x-4y\right)\)

\(=\left(x-4y\right)\left(x+1\right)\)

b: \(x^2-6xy+9y^2-4\)

\(=\left(x-3y\right)^2-4\)

\(=\left(x-3y-2\right)\left(x-3y+2\right)\)

a: Ta có: \(x^2-4y^2-2x-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c: Ta có: \(x^3+2x^2y-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

e: Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

f: Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)