Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a^{3}+3a^{2}-6a-8`
`=a^{3}-8+3a(a-2)`
`=(a-2)(a^{2}+2a+4)+3a(a-2)`
`=(a-2)(a^{2}+2a+4+3a)`
`=(a-2)(a^{2}+5a+4)`
`=(a-2)(a+1)(a+4)`
\(a^3-8+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4+3a\right)\)
\(=\left(a-2\right)\left(a^2+5a+4\right)\)
\(\left(a-2\right)\left(a+1\right)\left(a+4\right)\)
`49b^{2}-a^{2}+6a-9`
`=(7b)^{2}-(a-3)^{2}`
`=(7b-a+3)(7b+a-3)`
\(49b^2-a^2+6a-9\)
\(=49b^2-\left(a-3\right)^2\)
\(=\left(7b-a+3\right)\left(7b+a-3\right)\)
đây là hằng đẳng thức
\(a^3+6a^2+12a+8=a^3+3.2.a^2+3.2^2.a+2^3=\left(a+2\right)^3\)
mình làm 1 câu còn câu còn lại bạn tự làm nha giờ mình bận
a) \(a^4+6a^2+11a+6\)
\(=a^3+a^2+5a^2+5a+6a+6\)
\(=a^2\left(a+1\right)+5a\left(a+1\right)+6\left(a+1\right)\)
\(=\left(a^2+5a+6\right)\left(a+1\right)\)
\(=\left(a^2+2a+3a+6\right)\left(a+1\right)\)
\(=\left[a\left(a+2\right)+3\left(a+2\right)\right]\left(a+1\right)\)
\(=\left(x+2\right)\left(x+3\right)\left(x+1\right)\)
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
a) -ĐKXĐ của A:
x+3≠0 ⇔x≠-3.
x2-9≠0 ⇔(x-3)(x+3)≠0 ⇔x-3≠0 hay x+3≠0⇔x≠3 hay x≠-3.
x-3≠0 ⇔x≠3.
b) B=x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)
c) A=\(\dfrac{x}{x+3}-\dfrac{6x}{x^2-9}+\dfrac{2}{x-3}\)=\(\dfrac{x\left(x-3\right)+2\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-3x+2x+6-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-7x+6}{x^2-9}\)
d)- Vì x=37 thỏa mãn ĐKXĐ của A và A=\(\dfrac{x^2-7x+6}{x^2-9}\)nên:
A=\(\dfrac{37^2-7.37+6}{37^2-9}=\dfrac{279}{340}\)
a: Ta có: \(x^5-x^3+x^2-1\)
\(=x^3\left(x^2-1\right)+\left(x^2-1\right)\)
\(=\left(x-1\right)\cdot\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
b: Ta có: \(5x^3-45x\)
\(=5x\left(x^2-9\right)\)
\(=5x\left(x-3\right)\left(x+3\right)\)
c: Ta có: \(16x^4y^2+2xy^5\)
\(=2xy^2\left(8x^3+y^3\right)\)
\(=2xy^2\cdot\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
d: Ta có: \(a^3-8+6a^2-12a\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+6a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+8a+4\right)\)
e: Ta có: \(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
đk a > = 0
\(=3\sqrt{a}\left(2\sqrt{a}-1\right)\)