K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

5) xm + 2 - xm + 1

= xm + 1 (x - 1)

1: \(=5x^2y\left(x-7\right)+5xy\left(x-7\right)\)

\(=5xy\left(x-7\right)\left(x+1\right)\)

2: \(=3ab\left(x-y\right)-3a\left(x-y\right)\)

\(=3a\left(x-y\right)\left(b-1\right)\)

3: \(=4a\left(x-5\right)+2\left(x-5\right)\)

\(=2\left(x-5\right)\left(2a+1\right)\)

12 tháng 7 2021

undefined

a) Ta có: \(a^3y^3+125\)

\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)

b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)

\(=\left(2x-y\right)^3\)

8 tháng 7 2016

(2x+1)^2-(x-1)^2

= (4x^2 + 4x +1) - (x^2 - 2x +1)

= 2x^2 + 6x

= 2x(x+3)

9(x+5)^2-(x-7)^2

= 9 (x^2 + 10x + 25) - (x^2 - 14x +49)

= 9x^2 + 90x + 225 - x^2 + 14x - 49

= 8x^2 + 104x + 176

= 8x^2 + 8 * 13x + 8 * 22

= 8(x^2 + 13x +22)

x^2-y^2-x+y

= (x^2 - y^2) - (x-y)

= (x-y) (x+y) - (x-y)

= (x-y) (x+y+1)

24 tháng 7 2020

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

24 tháng 7 2020

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$

$=(xy-z)(xy+z)(x^2y^2+z^2)$

$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$

$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$

$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$

12 tháng 7 2021

Câu trả lời của cô quá đúng luôn đấy

a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)

\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)

\(A\left(x\right)=2x^3-x+5\)

-  Bậc của đa thức A(x) là 3

 - Hệ số tự do: 5

- Hệ số cao nhất: 2

 

b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)

\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)

\(B\left(x\right)=-4x^5+2x+3\)

-  Bậc của đa thức B(x) là 5

 - Hệ số tự do: 3

- Hệ số cao nhất: \(-4\)

 

c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)

   \(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\) 

   \(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)

   \(C\left(y\right)=5y^2-2y+3+3y^3-6y\)

   \(C\left(y\right)=5y^2-8y+3+3y^3\)

   \(C\left(y\right)=3y^3+5y^2-8y+3\)

-  Bậc của đa thức C(y) là 3

 - Hệ số tự do: 3

- Hệ số cao nhất: 3

   

 

   

 

 

27 tháng 7 2021

Trả lời:

1, 15x + 15y = 15 ( x + y )

2, 8x - 12y = 4 ( 2x - 3y )

3, xy - x = x ( y - 1 )

4, x2 + x = x ( x + 1 )

5, 3x2y - 8xy2 = xy ( 3x - 8y )

6, 6x - 12xy - 18x2 = 6x ( 1 - 2y - 3x )

27 tháng 7 2021

1) 15x + 15y = 15(x + y)

2) 8x - 12y = 4(2x - 3y)

3) xy - x = x(y - 1)

4) x2 + x = x(x + 1) 

5) 3x2y - 8xy2 = xy(3x - 8y)

6) 6x - 12xy - 18x2 = 6x(1 - 2y - 3x) 

2 tháng 5 2023

Bài 1:

(x² - 8)(x³ + 2x + 4)

= x².x³ + x².2x + x².4 - 8.x³ - 8.2x - 8.4

= x⁵ + 2x³ + 4x² - 8x³ - 16x - 32

= x⁵ - 6x³ + 4x² - 16x - 32

2 tháng 5 2023

Bài 2

a) A(x) = -5/3 x² + 3/4 x⁴ + 2x - 7/3 x² - 2 + 4x + 1/4 x⁴

= (3/4 x⁴ + 1/4 x⁴) + (-5/3 x² - 7/3 x²) + (2x + 4x) - 2

= x⁴ - 4x² + 6x - 2

b) Bậc của A(x) là 4

Hệ số cao nhất là 1