K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

a)   \(ĐKXĐ:\hept{\begin{cases}x\ne\frac{3}{2}\\x\ne1\\x\ne\frac{5}{3}\end{cases}}\)

\(P=\left(\frac{2x}{2x^2-5x+3}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right)\)

\(\Leftrightarrow P=\frac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\frac{3-3x+2}{1-x}\)

\(\Leftrightarrow P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{-3x+5}{1-x}\)

\(\Leftrightarrow P=\frac{-3x+5}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{1-x}{-3x+5}\)

\(\Leftrightarrow P=\frac{-1}{2x-3}\)

b) Khi |2x-1| = 3

\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\Leftrightarrow P=\frac{-1}{4-3}=-1\\x=-1\Leftrightarrow P=\frac{-1}{-2-3}=\frac{1}{5}\end{cases}}\)

Vậy khi \(\left|2x-1\right|=3\Leftrightarrow P\in\left\{-1;\frac{1}{5}\right\}\)

c) Để \(P>1\)

\(\Leftrightarrow\frac{-1}{2x-3}>1\)

\(\Leftrightarrow-1>2x-3\)

\(\Leftrightarrow2x< 2\)

\(\Leftrightarrow x< 1\)

Vậy để \(P>1\Leftrightarrow x< 1\)

d) Để \(P\inℤ\)

\(\Leftrightarrow-1⋮2x-3\)

\(\Leftrightarrow2x-3\inƯ\left(-1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{1;2\right\}\)

Vì \(x\ne1\)

\(\Leftrightarrow x\in\left\{2\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{2\right\}\)

3 tháng 8 2018

\(P=\left(\frac{2x}{2x^2-5x+2}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right) \)(dk x khac 3/2 ; x khac 1)

 
\(P=\left(\frac{2x}{\left(2x-3\right)\left(x-1\right)}-\frac{5\left(x-1\right)}{\left(2x+3\right)\left(x-1\right)}\right):\left(\frac{3\left(x-1\right)}{x-1}-\frac{2}{x-1}\right)\)

\(P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{3x-3-2}{x-1}\)

\(P=\frac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{x-1}{3x-5}\)

\(P=\frac{-1}{2x-3}\)

b) TC: \(|2x-1|=3\)

TH1) \(|2x-1|=2x-1\)khi \(x\ge\frac{1}{2}\)

2x-1=3 suy ra x=2 ( thoa dk)

TH2) \(|2x-1|=-2x+1\)khi \(x< \frac{1}{2}\)

-2x+1=3 suy ra x=-1 ( thoa dk)

khi x= 2 thi P=-1 

khi x= -1 thi P=1/5

c) de P thuoc Z thi \(-\frac{1}{2x-3}\)thuoc Z 

suy ra \(\frac{1}{3-2x}\)thuoc Z
suy ra 3-2x thuoc \(Ư\left(1\right)\in\left\{\pm1\right\}\)

khi 3-2x=1 thi x= 1 (ko thoa dk x khac 1)

khi 3-2x=-1 thi x=2(thoa dk)

vay x=2 thi P thuoc Z

d) giai tg tu cau c

3 tháng 8 2018

Bạn cần câu nào?

3 tháng 8 2018

làm đc câu nào hay câu đây, càng nhiều càng tốt

cảm ơn nha

23 tháng 6 2017

a) Điều kiện : \(x\ne2;x\ne3\)

 \(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

23 tháng 6 2017

b) Điều kiện \(x\in Z;x\ne2;x\ne3\)

Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên

\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)

mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)

6 tháng 12 2016

f) Tìm x để F>0

22 tháng 7 2020

vào thống kê xem link nhé: 

Câu hỏi của Kim Trân Ni - Toán lớp 8 - Học toán với OnlineMath