K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016

\(X-\frac{2}{3}.\left(X+9\right)=1\)

\(X-\frac{2}{3}X+\frac{2}{3}.9=1\)

\(\left(1-\frac{2}{3}\right)X+6=1\)

\(\frac{1}{3}X+6=1\)

\(\frac{1}{3}X=1-6\)

\(\frac{1}{3}X=-5\)

\(X=-5:\frac{1}{3}\)

\(X=-15\)

Mà lớp 5 chưa học âm đâu

17 tháng 6 2016

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}\)

\(=\frac{2010}{2011}\)

17 tháng 6 2016

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2010-1/2011

= 1 - 1/2011

= 2010/ 2011

Đáp số: 2010/2011

Chúy ý công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

14 tháng 6 2016

\(a,\left(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right):\frac{1}{4}:\frac{1}{6}\)

\(=\left(\frac{1}{6}+\frac{1}{4}-\frac{1}{5}\right)\cdot\frac{1}{4}\cdot\frac{1}{6}\)

\(=\left(\frac{10}{60}+\frac{15}{60}-\frac{12}{60}\right)\cdot\frac{1}{24}\)

\(=\frac{13}{60}\cdot\frac{1}{24}\)

\(=\frac{13}{1440}\)

\(b,\frac{2006\cdot2005-1}{2004\cdot2006+2005}\)

 \(\frac{2006\cdot2005-1}{2004\cdot2006+2005}\)

\(=\frac{2006\cdot\left(2004+1\right)-1}{2004 \cdot2006+2005}\)

\(=\frac{2006\cdot2004+2006\cdot1-1}{2004\cdot2006+2005}\)

\(=\frac{2006\cdot2004+2005}{2004\cdot2006 +2005}=1\)

Mình nghĩ phần b, ko có cách 2 đâu bạn .

\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)

\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)

\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)

\(\Leftrightarrow X=\frac{109}{6075}\)

Vậy X=109/6075

Chắc Sai kết quả chứ công thức đúng nha!!!...

Fighting!!!...

28 tháng 5 2019

Đặt: 

 \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)

=> \(A=\frac{12}{25}\)

Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

   \(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)

=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)

Giải phương trình:

\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)

                        \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)

                                                                            \(12x+\frac{12}{25}=11x+\frac{121}{243}\)

                                                                             \(12x-11x=\frac{121}{243}-\frac{12}{25}\)

                                                                                                  \(x=\frac{109}{6075}\)