K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P = (\frac{2}{2} \times\frac{1}{1+2}) + ( \frac{2}{2} \times \frac{1}{1+2+3})+...+(\frac{2}{2} \times \frac{1}{1+2+..+2018}) \) ( Phép tính sẽ không bị thay đổi kết quả vì 2/2 vốn bằng 1)

\(P = \frac{2}{2\times (1+2)} + \frac{2}{2\times (1+2+3)}+...+ \frac{2}{2 \times (1+2+..+2018)}\)

\(P = \frac{2}{6} + \frac{2}{12}+..+\frac{2}{4076361}\)

\(P=\frac{1}{2\times3} + \frac{1}{3\times 4}+..+\frac{1}{1018\times 1019}\)

\(P = \frac{1}{2} - \frac{1}{3} + \frac{1}{3}-\frac{1}{4}+\frac{1}{4} - ...- \frac{1}{1018} + \frac{1}{1018} -\frac{1}{1019} \)

\(P = \frac{1}{2} - \frac{1}{1019} = \frac{2017}{2038}\)

29 tháng 3 2022

Cảm ơn bạn nhìu

14 tháng 4 2021

1/2 x(1+2) + 1/3 x(1+2+3) + 1/4 x (1+2+3+4) +......+1/16x(1+2+....+16)

=1/2x (2.3/2) + 1/3x( 3.4/2)+....+ 1/16x (16.17/2)

=3/2+4/2+...+17/2

=1/2 (3+4+...+17)

=1/2x 150

=75

14 tháng 4 2021

nếu còn cách khác thì nhờ bạn giải giùm nha

7 tháng 3 2017

9/10 ban nhe

7 tháng 3 2017

9/10

k mk nha các ban

27 tháng 6 2017

S   =   1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

Số các số hạng của tổng \(S\)là :

 \(\left(9-1\right)\div1+1=9\)( số hạng )

Tổng của dãy số \(S\)là :

  \(\frac{\left(9+1\right).9}{2}=45\)

                          Đ/S: 45

M  =   1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101

Số các số hạng của tổng \(M\)là :

 \(\left(101-1\right)\div1+1=101\)

Tổng của dãy số \(M\)là :

 \(\frac{\left(101+1\right).101}{2}=5151\)

                                     Đ/S : 5151

27 tháng 6 2017

Số số hạng của dãy trên là : 

         (9 - 1) : 1 + 1 = 9 (số)

Tổng là : 

          (9 + 1) x 9 : 2 = 45 

25 tháng 5 2023

Ta dùng công thức \(1+2+...+n=\dfrac{n\times\left(n+1\right)}{2}\). Khi đó

\(\dfrac{1}{1+2}=\dfrac{1}{\dfrac{2\times3}{2}}=\dfrac{2}{2\times3}\);

\(\dfrac{1}{1+2+3}=\dfrac{1}{\dfrac{3\times4}{2}}=\dfrac{2}{3\times4}\);

\(\dfrac{1}{1+2+3+4}=\dfrac{1}{\dfrac{4\times5}{2}}=\dfrac{2}{4\times5}\);

...;

\(\dfrac{1}{1+2+3+...+2020}=\dfrac{1}{\dfrac{2020\times2021}{2}}=\dfrac{2}{2020\times2021}\).

\(\Rightarrow\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+2020}\)

\(=\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+\dfrac{2}{4\times5}+...+\dfrac{2}{2020\times2021}\)

\(=2\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{2020\times2021}\right)\)

\(=2\left(\dfrac{3-2}{2\times3}+\dfrac{4-3}{3\times4}+\dfrac{5-4}{4\times5}+...+\dfrac{2021-2020}{2020\times2021}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{2021}\right)\)

\(=\dfrac{2019}{2021}\)

 

24 tháng 11 2019

ta có:

1-1/2+1/2-1/3+1/3-1/4+....+1/x -1/x+1 =499/500

1-1/x+1 =499/500

1/x+1 =1/500 

x+1=500

x=499

24 tháng 11 2019

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{X\times\left(X+1\right)}=\frac{499}{500}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{X}-\frac{1}{X+1}=\frac{499}{500}\)

\(\Leftrightarrow1-\frac{1}{X+1}=\frac{499}{500}\)

\(\Leftrightarrow\frac{1}{X+1}=\frac{1}{500}\)

\(\Leftrightarrow X+1=500\)

\(\Leftrightarrow X=499\)

14 tháng 3 2017

đặt mẫu số chung là 16

ta có:

1/2+1/4+1/8+1/16=8/16+4/16+2/16+1/16

=> = 15/16

14 tháng 3 2017

1/2+1/4+1/8+1/16

cậu quy về một mẫu và mẫu đó là 16

1/2=8/16

1/4=4/16

1/8=2/16

1/16 giữ nguyên

8/16+4/16+2/16+1/16=15/16

6 tháng 3 2017

số số hạng dãy số là

(1902-1):1+1=1902(số)

tổng dãy số là

(1902+1)x1902:2=1809753

6 tháng 3 2017

Số các số hạng là:

   (1902-1):1+1=1902(số hạng)

Tổng của dãy số là:;

   (1902+1)x1902:2=1809753

           Đs:1809753.

Tk mk nhé!Thank you nhiều!!!