Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ACOD có
H là trung điểm của CD
H là trung điểm của OA
Do đó: ACOD là hình bình hành
mà OC=OD
nên ACOD là hình thoi
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b:
Xét (O) có
ΔBDC nội tiếp
BD là đường kính
Do đó: ΔBDC vuông tại C
Xét ΔOBA vuông tại B và ΔDCB vuông tại C có
\(\widehat{BOA}=\widehat{CDB}\)
Do đó: ΔOBA∼ΔDCB
Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)
hay \(DC\cdot OA=2\cdot R^2\)
a: Xét (O) có
MC là tiếp tuyến có C là tiếp điểm
MD là tiếp tuyến có D là tiếp điểm
Do đó: MC=MD
Ta có: MC=MD
nên M nằm trên đường trung trực của CD(1)
Ta có: OC=OD
nên O nằm trên đường trung trực của CD(2)
Từ (1) và (2) suy ra MO là đường trung trực của CD
hay MO\(\perp\)CD