Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sản phẩm người công nhân đó phải làm là x(sản phẩm)
Khi đó, thời gian dự định của người công nhân là \(\frac{x}{23}\left(h\right)\)
Số sản phẩm lúc sau là x+18 (sản phẩm)
Thời gian làm lúc sau là \(\frac{x+18}{31}\left(h\right)\)
Do làm xong sớm hơn dự định 2h nên thời gian sau ngắn hơn thgian trc 2h, do đó
\(\frac{x+18}{31}=\frac{x}{23}-2\)
\(\Leftrightarrow23\left(x+18\right)=31x-2.23.31\)
\(\Leftrightarrow8x=1840\)
\(\Leftrightarrow x=230\)
Vậy số sản phẩm người đó phải làm là 230 sản phẩm.
Cho \(x\) là năng suất dự định làm của người đó \(\left(x\in N\text{*}\right)\).
Thời gian dự định làm của người đó là \(\dfrac{60}{x}\).
Do mỗi giờ làm thêm 4 sản phẩm nên năng suất thực tế là \(x+4\).
Thời gian thực tế người đó làm 60 sản phẩm và thêm 12 sản phẩm : \(\dfrac{60+12}{x+4}=\dfrac{72}{x+4}\).
Do làm sớm trước kế hoạch \(30\left(phút\right)=\dfrac{1}{2}\left(h\right)\) nên : \(\dfrac{60}{x}-\dfrac{72}{x+4}=\dfrac{1}{2}\)
\(\Rightarrow120\left(x+4\right)-144x=x\left(x+4\right)\)
\(\Leftrightarrow x^2+28x-480=0\left(I\right)\).
Phương trình \(\left(I\right)\) có : \(\Delta'=b'^2-ac=14^2-1.\left(-480\right)=676>0\)
Suy ra, phương trình \(\left(I\right)\) có hai nghiệm phân biệt :
\(\left[{}\begin{matrix}x_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-14+\sqrt{676}}{1}=12\left(tm\right)\\x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-14-\sqrt{676}}{1}=-40\left(ktm\right)\end{matrix}\right.\).
Vậy : Năng suất thực tế làm của người đó là \(x+4=12+4=16\) (sản phẩm/giờ).
Gọi năng suất là x
=>Thời gian dự định là 60/x
Năng suất thực tế là x+4
Theo đề, ta có:
60/x-72/x+4=1/2
=>x=12
x: Số SP
=>
Thời gian dự định: x/12
Thời gian thực thế (x/2)/12 + (x/2)/15
\(\frac{x}{12}\)- (\(\frac{x}{2.12}\)+\(\frac{x}{2.15}\)) = 1
=> \(\frac{x}{24}\)- \(\frac{x}{30}\) = 1
=> \(\frac{x}{120}\) = 1
=> x = 120
Đổi 30 phút =1/2 h
Gọi năng suất người công nhân theo kế hoạch là x(sản phâm/h) ĐK: \(x>0,x\in N\)
Theo kế hoạch thì thời gian mà người đó hoàn thành 60sp là \(\frac{60}{x}\left(h\right)\)
Nhưng trên thực tế người công nhân đó mỗi giờ làm thêm 2 sản phẩm vậy năng suất thự tế là \(x+2\)(sp/h)
Số sản phẩm mà người đó làm được trên thực tế là \(60+3=63\left(sp\right)\)
Do đó thời gian thực tế mà người đó hoàn thành công việc là \(\frac{63}{x+2}\left(h\right)\)
Vì kế hoạch được hoàn thành sớm hơn dự định 1/2 h nên ta có pt sau:
\(\frac{60}{x}-\frac{63}{x+2}=\frac{1}{2}\)
\(\Leftrightarrow\frac{60x+120}{x\left(x+2\right)}-\frac{63x}{x\left(x+2\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{-3x+120}{x^2+2x}=\frac{1}{2}\)
\(\Leftrightarrow x^2+2x=-6x+240\)
\(\Leftrightarrow x^2+8x-240=0\)
\(\Leftrightarrow x^2-12x+20x-240=0\)
\(\Leftrightarrow x\left(x-12\right)+20\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-12\right)\left(x+20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\left(tm\right)\\x=-20\left(loai\right)\end{cases}}\)
Vậy theo kế hoạch mỗi giờ người đó làm được 12 sản phẩm
Gọi số sản phẩm người đó phải hoàn thành theo kế hoạch trong mỗi giờ là a (sản phẩm) (a>0)
Nên số giờ người đó dự định hoàn thành 60 sản phẩm là \(\frac{60}{a}\) (giờ)
Do cải tiến kĩ thuật nên mỗi giờ người đó làm được a+2 (sản phẩm), và còn vượt mức 3 sản phẩm nên thời gian hoàn thành công việc thực tế là \(\frac{60+3}{a+2}\left(giờ\right)\)
Sớm hơn dự định 30 phút = \(\frac{1}{2}\) giờ, nên ta có:
\(\frac{60}{a}-\frac{60+3}{a+2}=\frac{1}{2}\)
\(\Rightarrow\left[60\left(a+2\right)-63a\right]2=a^2+2a\)
\(\Rightarrow a^2+8a-240=0\)
\(\Delta'=4^2+240=256>0\)
\(\Rightarrow a=-4-\sqrt{256}=-20< 0\left(l\right)\)
Hoặc \(a=-4+\sqrt{256}=12\) ( nhận )
Vậy theo kế hoạch mỗi giờ người đó làm 12 sản phẩm.
Gọi số sản phẩm người đó mỗi giờ phải làm theo kế hoạch là \(x\)(sản phẩm), \(x>0\).
Theo kế hoạch người đó hoàn thành công việc sau số giờ là: \(\frac{60}{x}\)(giờ)
Đổi: \(30\)phút \(=\)\(0,5\)giờ.
Thực tế mỗi giờ người đó sản xuất được: \(x+2\)(sản phẩm)
Người đó hoàn thành công việc sau: \(\frac{60}{x}-0,5\)(giờ).
Ta có phương trình:
\(\left(x+2\right)\left(\frac{60}{x}-0,5\right)=63\)
\(\Rightarrow-0,5x^2+59x+120=63x\)
\(\Leftrightarrow x^2+8x-240=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\left(tm\right)\\x=-20\left(l\right)\end{cases}}\)
Gọi thời gian 2 công nhân thứ 1 ; thứ 2 hoàn thành xong công việc một mình là a;b (a;b > 8) (h)
=> 1 giờ mỗi người làm được \(\dfrac{1}{a};\dfrac{1}{b}\) (công việc)
2 người làm chung 8 giờ xong
=> 1 giờ 2 người làm được : \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\)(công việc) (1)
Lại có người 2 xong trước người 1 làm một minh là 12 giờ
=> b - a = 12 (giờ) (2)
Từ (1);(2) hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\\b-a=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{a+12}=\dfrac{1}{8}\\b=a+12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+12a=8.\left(2a+12\right)\\b=a+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-4a-96=0\\b=a+12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=12\\a=-8\left(\text{loại}\right)\end{matrix}\right.\\b=a+12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12\\b=24\end{matrix}\right.\)(t/m)
Vậy....
Có khả năng vì bây giờ hay bấm máy mà
ko biết vì bây giờ hầu hết là dùng điện thoại , máy tính mà!