K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

huhuhu phân tích cả buổi chả đc tí j

28 tháng 3 2018

chừng có ai trả lời đc báo mình với nha

6 tháng 6 2019

\(x^2+4y^2-4x-4y+5=0\)

\(\Leftrightarrow x^2-4x+4+4y^2-4y+1=0\)

\(\Leftrightarrow\left(x^2-2\cdot x\cdot2+2^2\right)+\left[\left(2y\right)^2-2\cdot2y\cdot1+1^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)

Vậy....

6 tháng 6 2019

nhom (x2-4x+5)+(4y2-4y)

12 tháng 9 2015

=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0

còn lại thì e bó tay . canh 

12 tháng 9 2015

(x+2y)(x2-2xy+4y2)=0

<=>x3+(2y)3=0

<=>x3+8y3=0  (1)

(x-2y)(x2+2xy+4y2)=0

<=>x3-(2y)3=0

<=>x3-8y3=0  (2)

từ (1) và (2)=>x3+8y3-x3+8y3=0

<=>16y3=0

<=>y=0

thay y=0 vào (1) ta đc:

x3-0=0

<=>x3=0

<=>x=0

2 tháng 8 2015

CM đẳng thức hay tìm x,y vậy 

2 tháng 8 2015

Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha 

Biến đổi vế phải  ta có :

( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)

                                      = ( x+  y)( x^2 - xy+ y^2)

                                       = x^3 + y^3

VẬy VT  = VP đẳng thức được CM 

   

19 tháng 11 2016

a) x2 -  2xy + y2  + 1 = (x-y)2 + 1 \(\ge\)1  

=> (x-y)2 +1 >0  =>  x2 - 2xy + y2  >0 

b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2\(\frac{3}{4}\)< 0   => x -  x2  - 1 <0

7 tháng 7 2020

a) Ta có:

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

.\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)

\(\Rightarrow x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)

b) Ta có :

\(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

Ta có :

\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x

\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )

19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2

2 tháng 11 2021

a) \(3xy^2-12x\)

\(=3x\left(y^2-4\right)\)

 

Bài 1:

b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+4\right)\)

c: \(=\left(x+y-3\right)\left(x+y+3\right)\)

11 tháng 3 2020

Giúp mik với T_T

11 tháng 3 2020

a) vì x = -2 

A = 4y -1

B = -1 - 2y

A.B= 0 \(\Leftrightarrow\)(4y-1) . ( (-2y-1) = 0

\(\Leftrightarrow\orbr{\begin{cases}4y-1=0\\-2y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{4}\\y=\frac{-1}{2}\end{cases}}}\)

b)  Vì x = 2y nên

A = 6y + 4y + 5 = 10y +5

B = 4.2y - 2y +7 = 6y+7

A.B=0 \(\Leftrightarrow\left(10y+5\right).\left(6y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-7}{6}\end{cases}}\)

Với y= - 1/2 \(\Leftrightarrow\)x= -1

Với y = -7/6 \(\Leftrightarrow\)x=-7/3