Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)
\(\Rightarrow x^4\le15x-14\).
Tương tự: \(y^4\le15y-14;z^4\le15z-14\).
Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:
\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).
Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.
Vậy...
cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14
có phưong pháp nào ko
nếu có thì bn giúp mk vs nhé
Bài 86:
a: Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b: Để Q>0 thì \(\sqrt{a}-2>0\)
hay a>4
Hình a: 60 độ
Hình b: 90 độ
Hình c: 180 độ
Hình d: 120 độ
a, (P) đi qua M(-3;18)
<=> \(-18=9a\Leftrightarrow a=-2\)
Vậy với a = -2 thì (P) đi qua M(-3;18)
b, bạn tự vẽ
Câu 15:
Ta có: \(\sqrt{32x}+\sqrt{50x}-2\sqrt{8x}+\sqrt{18x}\)
\(=4\sqrt{2x}+5\sqrt{2x}-4\sqrt{2x}+3\sqrt{2x}\)
\(=8\sqrt{2x}\)
Câu 14 : \(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\) với x >0 ; x≠0
\(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}\)
\(C=\left(\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}\)
\(C=\dfrac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}-1}{1}\)
\(C=\dfrac{x+2}{\sqrt{x}}\)
Chúc bạn học tốt