K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=1 thì hệ sẽ là x+y=1 và x-y=2

=>x=1,5; y=0,5

b: \(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m\left(1-y\right)-y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m-my-y=2m\end{matrix}\right.\)

=>x=1-y và y(-m-1)=m

=>x=1-y và y=-m/m+1

=>x=1+m/m+1=2m+1/m+1 và y=-m/m+1

Để x,y nguyên thì 2m+1 chia hết cho m+1 và -m chia hết cho m+1

=>\(m+1\in\left\{1;-1\right\}\)

=>\(m\in\left\{0;-2\right\}\)

a: Khi x<0 thì hàm số đồng biến

b: PTHĐGĐ là:

-x^2=2x-3

=>-x^2-2x+3=0

=>x^2+2x-3=0

=>(x+3)(x-1)=0

=>x=1 hoặc x=-3

=>y=-1 hoặc y=-9

c: Thay y=-4vào (P),ta được:

x^2=4

=>x=2 hoặc x=-2

a: ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

góc OIA=góc OMA=góc ONA=90 độ

=>O,I,A,M,N cùng thuộc đường tròn đường kính OA

Tâm là trung điểm của OA

R'=OA/2

b: Xét ΔOAN vuông tại N có cos AON=ON/OA=1/2

=>góc AON=60 độ

=>sđ cung MN=2*60=120 độ

c: Xét ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM/AC=AB/AM

=>AM^2=AB*AC

1 tuần nữa có nhé bạn

1 tuần nữa có nhé bạn

1 tuần nữa có nhé bạn

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

Bài 2:

a: Thay x=-2 và y=-1 vào (d), ta được:

-2(m+1)+m+2=-1

=>-2m-2+m+2=-1

=>-m=-1

=>m=1

b: (d): y=2x+3

Tọa độ A là:

y=0 và 2x+3=0

=>x=-3/2 và y=0

=>OA=1,5

Tọa độ B là:

x=0 và y=2*0+3=3

=>OB=3

\(AB=\sqrt{1.5^2+3^2}=1.5\sqrt{5}\)

=>\(C=1.5+3+1.5\sqrt{5}=1.5\sqrt{5}+4.5\)

\(S=\dfrac{1}{2}\cdot OA\cdot OB=2.25\)

21 tháng 12 2021

Câu 15: A

Câu 16: C

Câu I:

1) Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{x+\sqrt{x}-4}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x+x+\sqrt{x}-2-x-\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{x+2}{\sqrt{x}}\)

2) Để P=3 thì \(\dfrac{x+2}{\sqrt{x}}=3\)

\(\Leftrightarrow x+2=3\sqrt{x}\)

\(\Leftrightarrow x-3\sqrt{x}+2=0\)

\(\Leftrightarrow x-\sqrt{x}-2\sqrt{x}+2=0\)

\(\Leftrightarrow\sqrt{x}\cdot\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)
Vậy: Để P=3 thì x=4

20 tháng 2 2023

`a)m=0=>x^2-x+3=0<=>(x-1/2)^2+11/4=0` (Vô lí)

  `=>m=0` ptr vô nghiệm

`b)` Ptr có nghiệm kép `<=>\Delta=0`

  `<=>[-(2m+1)]^2-4(m^2+3)=0`

  `<=>4m^2+4m+1-4m^2-12=0`

  `<=>4m-11=0`

  `<=>m=11/4`

`c)` Ptr có `2` nghiệm pb`<=>\Delta > 0`

                                       `<=>4m-11 > 0<=>m > 11/4`

`d)` Ptr vô nghiệm `<=>\Delta < 0<=>4m-11 < 0<=>m < 11/4`

Bài 2:

a: Khi m=0 thì pt sẽ là:

\(x^2-x+3=0\)

=>\(x\in\varnothing\)

b: \(\Delta=\left(2m+1\right)^2-4\left(m^2+3\right)\)

=4m^2+4m+1-4m^2-12

=4m-11

Để pt có nghiệm kép thì 4m-11=0

=>m=11/4

c: Để phương trình có hai nghiệm pb thì 4m-11>0

=>m>11/4

d: Để pt vô nghiệm thì 4m-11<0

=>m<11/4