Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2+y2+2x-4y+5
=x2+2x+1+y2-4y+4
=(x+1)2+(y-2)2
A=0
=>(x+1)2+(y-2)2=0
<=>x+1=0 và y-2=0
<=>x=-1 và y=2
1.
a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)
\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)
\(\Leftrightarrow x^3+3x^2+2x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)
b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
1c/
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
Vậy pt có nghiệm duy nhất \(x=-1\)
\(1,\\ a,=\left[x^3\left(x-2\right)-4x\left(x-2\right)\right]:\left(x^2-4\right)\\ =x\left(x^2-4\right)\left(x-2\right):\left(x^2-4\right)=x\left(x-2\right)\\ b,=\left(2014-14\right)^2=2000^2=4000000\\ 2,\\ A=2015\cdot2013\cdot\left(2014^2+1\right)\\ A=\left(2014^2-1\right)\left(2014^2+1\right)\\ A=2014^4-1< B=2014^4\)
Ta có:\(1999.2001\)
\(=\left(2000-1\right)\left(2000+1\right)\)
\(=2000^2-1^2\)\(< 2000^2\)
\(\Rightarrow1999.2001< 2000^2\)
Ta có:
1999.2001=1999.(2000+1)=1999.2000+1999
2000^2=2000.2000=(1999+1).2000=1999.2000+2000
Vì 1999.2000+1999<1999.2000+2000 nên 1999.2001<2000^2
k giúp mk nhé
d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Gọi độ dài 3 cạnh của tam giác là a, b, c. Độ dài 3 đường cao tương ứng là x, y, z
Ta có x+y : y+z : x+z = 5 : 7: 8
\(\Rightarrow\frac{x+y}{5}=\frac{y+z}{7}=\frac{x+z}{8}=k\)
=> x+y=5k
y+x=7k
x+z=8k
=> 2 (x+y+z) = 20k
=> x+y+z=10k
=> x = 3k
=> y = 2k
z= 5k
Ta có ax=by=cz(=2S) => 3ka=2kb=5kc => 3a=2b=5c
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)
Vậy 3 cạnh của tam giác tỉ lệ với 10; 15; 6
Gọi độ dài 3 cạnh của tam giác là a, b, c. Độ dài 3 đường cao tương ứng là x, y, z
Ta có (x+y) : (y+z) : (x+z) = 5 : 7: 8
=> (x+y):5=(y+z):7=(x+z):8=k
=> x+y=5k
y+x=7k
x+z=8k
=> 2 (x+y+z) = 20k
=> x+y+z=10k
=> x = 3k
y = 2k
z= 5k
Vậy tỷ lệ 3 đường cao của tam giác: x : y : z = 3 : 2 : 5