Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )
a) \(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
c) \(36-12x+x^2=x^2-12x+36=x^2-6x-6x+36\)
\(=x\left(x-6\right)-6\left(x-6\right)=\left(x-6\right)\left(x-6\right)=\left(x-6\right)^2\)
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(4x^2+12x+9\)
\(=\left(2x\right)^2+2.2x.3+9\)
\(=\left(2x+3\right)^2\)
\(36-12x+x^2\)
\(=6^2-2.6.x+x^2\)
\(=\left(6-x\right)^2\)
a: \(=\dfrac{15}{5}\cdot\dfrac{x^3}{x^2}\cdot\dfrac{y^5}{y^3}\cdot z=3xy^2z\)
b: \(=-\dfrac{4}{3}x^3\)
c: \(=\dfrac{30x^4y^3}{5x^2y^3}-\dfrac{25x^2y^3}{5x^2y^3}-\dfrac{3x^4y^4}{5x^2y^3}\)
\(=6x^2-5-\dfrac{3}{5}x^2y\)
d: \(=\dfrac{4x^4}{-4x^2}+\dfrac{8x^2y^2}{4x^2}-\dfrac{12x^5y}{4x^2}\)
\(=-x^2+2y^2-3x^3y\)
a,A=3x^2y^4+5x^3+xy-3x^2y^4
A=5x3 +xy
=> bậc của A là 3
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
=> bậc của B là 8
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
C = 5x4y2 -7x3y2 (-2xy2) - 5x4y2 +x3 -14x4y4
C = 5x4y2 + 14x4y4 -5x4y2 +x3 -14x4y4
C = x3
=> Bậc của C là 3
Để \(M=5xy^3+4x^2y^2-12x^3y\\ \) và \(A=x\left(x^3+12x^2y-5y^3\right)\) ko âm
\(\Rightarrow\)\(M+A\)cũng đồng thời >0
\(\Rightarrow\)\(M+A=\left(5xy^3+4x^2y^2-12x^3y\right)+\left(x^4+12x^3y-5y^3x\right)\)
\(\Rightarrow\)\(M+A=\left(5xy^3-5xy^3\right)-\left(12x^3y-12x^{3y}\right)+\left(x^4+4x^2y^2\right)\)
\(\Rightarrow M+A=x^4+4x^2y^2\)
Mà \(x^4\ge0\) \(;4x^2y^2\ge0\)
\(\Rightarrow\)\(x^4+4x^2y^2\ge0\)
\(\Rightarrow\)\(M+A\ge0\)
\(4x^4y-4x^2y^3+12x^3y+12x^2y^2\)
\(=4x^2y\left(x^2-y^2+3x+3y\right)\)
\(=4x^2y\left(x-y-3\right)\left(x+y\right)\)