K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

200 = 23 . 52

140 = 22 . 5.7

100 = 22 . 52

=> ƯCLN (200: 140 ; 100) = 22 . 5 = 20

 

Mỗi phần được số quyển vở là:

200 : 20 = 10 (quyển)

Mỗi phần có số quyển sách là:

140 : 20 = 7 (quyển)

Mỗi phần có số khăn đỏ là:

100 : 20 = 5 (cái)

Có thể chia được nhiều nhất 99 phần vì UCLN(198;693;1287)=99

Khi đó, mỗi phần có 2 sách, 7 vở và 12 bút

Có thể chia được nhiều nhất 99 phần thưởng vì UCLN(198;693;1287)=99

Khi đó, mỗi phần có 2 sách, 7 vở và 13 bút

20 tháng 11 2021

: Cô giáo muốn chia đều 48 quyển vở và 72 quyển sách thành một số phần thưởng giống nhau (không thừa quyển nào). Hỏi cô giáo có thể chia được nhiều nhất bao nhiêu phần thưởng. Khi đó, mỗi phần thưởng có bao nhiêu quyển sách, bao nhiêu quyển vở

Người ta muốn chia 374 quyển vở, 68 cái thước và 340 nhãn vở thành một số phần
thưởng như nhau nên số phần thưởng nhiều nhất thuộc ƯCLN( 374;68;340)
Ta có 
374=2.11.17
68=2^2.17
340=2^2.5.17
=) UCLN (374; 68;340)=34
=) số phần thưởng nhiều nhất là 34

nhìn giống cái mặt cừi:>

Gọi xx là số phần thưởng có thể chia được (x∈N*)

Vì người ta muốn chia 374 quyển vở , 68 cái thước, 918 nhãn vở thành một số phần thưởng như nhau nên suy ra 374 chia hết cho x68 chia hết cho x918chia hết cho x

⇒x∈UC(374;68;918)

Lại có x lớn nhất nên x=UCLN(374;68;918)

Ta có : 

  374=2.11.17 ;           68=22.17  ;           918=2.33.17

⇒UCLN(374;68;918)=2.17=34

Do đó có thể chia nhiều nhất thành 34 phần thưởng. 

Khi đó, mỗi phần thưởng có số quyển vở là :

         374:34=11 (quyển vở)

Mỗi phần thưởng có số cái thước là :

         68:34=2 (cái thước)

Mỗi phần thưởng có số nhãn vở là :

         918:34=279 (nhãn vở )

Vậy có thể chia nhiều nhất thành 34 phần thưởng, mỗi phần thưởng có 11 quyển vở, 22 cái thước và 27 nhãn vở.

22 tháng 12 2021
1234567890