Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Phương trình
Bảng biến thiên:
Căn cứ bảng biến thiên
=> phương trình có nghiệm khi - m > 30
<=> m < - 30
Đáp án: C
Vì f'(x) = ( x 5 + x 3 - 7)' = 5 x 4 + 3 x 2 ≥ 0, ∀x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x0 ∈ (0;2) để f(x0) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.
Cách khác: Phương trình 3 sin 2 x - cos 2 x + 5 = 0
⇔ 3 sin 2 x + sin 2 x + 4 = 4( sin 2 x + 1) = 0, vô nghiệm
Các phương trình x 2 - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình x 5 + x 3 - 7 = 0 có nghiệm duy nhất trên R.
Đáp án: C
Vì f'(x) = ( x 5 + x 3 - 7)' = 5 x 4 + 3 x 2 ≥ 0, ∀ x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x 0 ∈ (0;2) để f( x 0 ) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.
Cách khác: Phương trình 3 sin 2 x + c o s 2 x + 5 = 0
⇔ 3 sin 2 x + sin 2 x + 4 = 4( sin 2 x + 1) = 0, vô nghiệm
Các phương trình x 2 - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình x 5 + x 3 - 7 = 0 có nghiệm duy nhất trên R.
Đáp án:B.
Với f(x) = x 3 + 5x + 6 thì vì f'(x) = 3 x 2 + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.
Chọn D
Phương trinh:
<=> x = 4
Với x=4, thay lần lượt vào các đáp án, ta được log2( x2- 8) =3