K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2016

5.(x2 - x + 1) = 7x2 <=> 5x2 - 5x + 5 = 7x2

                                       2x2 + 5x - 5 = 0 <=> x(2x + 5) = 5

x = 1 hoặc 2x + 5 = 5 => x = 1 hoặc x = 0 (1)

x = 5 hoặc 2x + 5 = 1 => x = 5 hoặc x = - 2 (2)

x = - 1 hoặc 2x + 5 = - 5 => x = - 1 hoặc x = - 5 (3)

x = - 5 hoặc 2x + 5 = - 1 => x = - 5 hoặc x = - 3 (4)

Từ (1); (2); (3); (4) => Nghiệm nguyên của phương trình là x = - 5

b)

ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)

Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)

Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)

\(\Leftrightarrow2x^2-14=2x^2+x-10\)

\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(nhận)

Vậy: S={-4}

19 tháng 3 2020

Bạn bạn nhân phân phối (3x-1)(x-2) và (3x-1)(7x-10)   

Sau đó chuyển vế sao cho về phương trình bậc 2 

Sau đó giải pt bậc hai là ra

19 tháng 3 2020

Ta có : (3x -1 ) . ( x + 2 ) = ( 3x-1 ) .( 7x - 10)

     <=>3.x2 + 6x -x -2    = 21x2 -30x - 7x +10

    <=> 3x2 + 5x -2           = 21x2 -37x + 10

   <=> 3x2 +5x - 3 - 21x2 +37x -10 = 0

    <=> -18x2 + 42x -12                  = 0

    <=> 3x2 -7x +2                           = 0

   <=> 3x2 -x -6x + 2                    = 0

    <=> x. ( 3x -1 ) -2.(3x -1 )       = 0

    <=> (3x -1 ) . ( x - 2 )               = 0

   <=> \(\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)

Tập nghiệm của phương trình là : { \(\frac{1}{3}\); 2}

19 tháng 3 2020

( 3x - 1)( x + 2) = ( 3x - 1)(7x - 10)

<=>( 3x - 1)( x + 2) - ( 3x - 1)(7x - 10) = 0

<=> ( 3x - 1)( x + 2 - 7x + 10) = 0

<=>( 3x - 1)( -6x + 12) = 0

\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\-6x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}}\)

Vậy.....

\(\left(3x-1\right)\left(x+2\right)=\left(3x-1\right)\left(7x-10\right)\)

\(3x^2+5x-2=21x^2-37x+10\)

\(3x^2+5x-2-21x^2+37x-10=0\)

\(-18x^2+42x-12=0\)

\(-6\left(3x-1\right)\left(x-2\right)=0\)

\(-6\ne0\)

\(\left(3x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=1\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}}\)

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

18 tháng 10 2020

Ta có:

\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\) là tích 5 số tự nhiên nên chia hết cho 5 

Mà 2x không chia hết cho 5 nên

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)

Mà 11879 không chia hết cho 5 nên y=0

=> \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9.10.11.12\Rightarrow x=3\)

Vậy pt có nghiệm (x;y)=(3;0)

Dễ thấy vế trái chia hết cho 5 với y >0
Vậy y=0 , giải ra x 

Học tốt!!!!!!!

 Ta có :  2x;2x+1;2x+2;2x+3;2x+4 là 5 số tự nhiên liên tiếp.

                        =>  2x(2x+1)(2x+2)(2x+3)(2x+4)⋮5

                Mặt khác ƯCLN ( 2x; 5)=1 nên  (2x+1)(2x+2)(2x+3)(2x+4)⋮5 

                + Với  y≥1 thì VP= [(2x+1)(2x+2)(2x+3)(2x+4)−5y]⋮5 

                Mà VP= 11879≡4(mod5) 

                Suy ra phương trình vô nghiệm

                +Với y=0 ta có :

                        (2x+1)(2x+2)(2x+3)(2x+4)−50=11879 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=11880 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=9.10.11.12

                 <=> 2x+1=9 

                 <=> 2x=8 

                 <=> 2x=23 

                 <=>x=3

                 Vậy phương trình đã cho có 1 nghiệm duy nhất (x; y)=(3; 0)

11 tháng 1 2023

Bài `1:`

`h)(3/4x-1)(5/3x+2)=0`

`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`

______________

Bài `2:`

`b)3x-15=2x(x-5)`

`<=>3(x-5)-2x(x-5)=0`

`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`

`d)x(x+6)-7x-42=0`

`<=>x(x+6)-7(x+6)=0`

`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`

`f)x^3-2x^2-(x-2)=0`

`<=>x^2(x-2)-(x-2)=0`

`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`

`h)(3x-1)(6x+1)=(x+7)(3x-1)`

`<=>18x^2+3x-6x-1=3x^2-x+21x-7`

`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`

`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`

`j)(2x-5)^2-(x+2)^2=0`

`<=>(2x-5-x-2)(2x-5+x+2)=0`

`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`

`w)x^2-x-12=0`

`<=>x^2-4x+3x-12=0`

`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`

11 tháng 1 2023

`m)(1-x)(5x+3)=(3x-7)(x-1)`

`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`

`<=>(1-x)(5x+3+3x-7)=0`

`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`

`p)(2x-1)^2-4=0`

`<=>(2x-1-2)(2x-1+2)=0`

`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`

`r)(2x-1)^2=49`

`<=>(2x-1-7)(2x-1+7)=0`

`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`

`t)(5x-3)^2-(4x-7)^2=0`

`<=>(5x-3-4x+7)(5x-3+4x-7)=0`

`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`

`u)x^2-10x+16=0`

`<=>x^2-8x-2x+16=0`

`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`