Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-10x2+21x
= x3-7x2-3x2+21x
= x2(x-7)-3x(x-7)
= (x2-3x)(x-7)
b) 3x3-7x2-20x
= x(3x2-7x-20)
= x(3x2+5x-12x-20)
= x[x(3x+5)-4(3x+5)]
= x(x-4)(3x+5)
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
1) =\(-3x^4+9x^3+11x^3-33x^2-2x^2+6x-16x+48\)
=\(-3x^3\left(x-3\right)+11x^2\left(x-3\right)-2x\left(x-3\right)-16\left(x-3\right)\)
= \(\left(x-3\right)\left(-3x^3+11x^2-2x-16\right)\)
= \(\left(x-3\right)\left(-3x^3+6x^2+5x^2-10x+8x-16\right)\)
=\(\left(x-3\right)\left(-3x^2\left(x-2\right)+5x\left(x-2\right)+8\left(x-2\right)\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(-3x^2+5x+8\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(x-\frac{8}{3}\right)\left(x+1\right)\)
Ý b lm theo ý tưởng tương tự nha bn :D
b) Lm tương tự
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
=> C = \(\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\)
=> C = \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Vì \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) => C \(\ge\) 2
=> Dấu bằng xảy ra <=> \(\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy GTNN của C =2 khi x = -3; y= 1
a) Ta có: A = 0
=> x2 + 2x - 3 = 0
=> x2 + 3x - x - 3 = 0
=> x(x + 3) - (x + 3) = 0
=> (x - 1)(x + 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy ...
b) Ta có: B = 0
=> -3x2 + 12x - 9 = 0
=> -3x2 + 3x + 9x - 9 = 0
=> -3x(x - 1) + 9(x - 1) = 0
=> (-3x + 9)(x - 1) = 0
=> -3(x - 3)(x - 1) = 0
=> (x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy ...
c) C = 0
=> 10x2 - 7x - 3 = 0
=> 10x2 - 10x + 3x - 3 = 0
=> 10x(x - 1) + 3(x - 1) = 0
=> (10x + 3)(x - 1) = 0
=> \(\orbr{\begin{cases}10x+3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}10x=-3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
d) D = 0
=> -7x4 + 10x3 - 3x2 = 0
=> x2(-7x2 + 10x - 3) = 0
=> x2(-7x2 + 7x + 3x - 3) = 0
=> x2.[-7x(x - 1) + 3(x - 1)] = 0
=> x2.(-7x + 3)(x - 1) = 0
=> x^2 = 0
-7x + 3 = 0
hoặc x - 1 = 0
=> x= 0
-7x = -3
hoặc x = 1
=> x = 0
hoặc x = 3/7
hoặc x = 1
Vậy ...