K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2022

cẩn thận là được bạn ạ, có thể luyện tập dần đi cũng được, vẽ mấy hình trong sgk, sbt hay trên mạng cũng có á

Anh chỉ cần vẽ đúng theo yêu cầu là được rồi

NV
6 tháng 8 2021

\(a=\dfrac{1}{9}.\left(999...9\right)=\dfrac{1}{9}.\left(100...0-1\right)=\dfrac{1}{9}\left(10^n-1\right)\)

\(b=100...0+5=10^n+5\)

\(\Rightarrow ab+1=\dfrac{1}{9}\left(10^n-1\right)\left(10^n+5\right)+1=\dfrac{1}{9}\left(10^{2n}+4.10^n+4\right)=\dfrac{1}{9}\left(10^n+2\right)^2\)

\(=\left(\dfrac{10^n+2}{3}\right)^2\)

Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\)

\(\Rightarrow10^n+2⋮3\)

\(\Rightarrow\dfrac{10^n+2}{3}\in Z\)

\(\Rightarrow\left(\dfrac{10^n+2}{3}\right)^2\) là SCP hay \(ab+1\) là SCP

NV
22 tháng 3 2023

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

NV
22 tháng 3 2023

loading...

22 tháng 4 2017

Ta có:

ABAB′ = BCBC′ mà AB' = x + h nên

xx+h = aa′ <=> a'x = ax + ah

<=> a'x - ax = ah

<=> x(a' - a) = ah

x= aha′−a

Vậy khoảng cách AB bằng