K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

a)Với  x \(\ne\)-1

Ta có: x2 + x = 0

=> x(x + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-1\left(ktm\right)\end{cases}}\)

Với x = 0 => A = \(\frac{0-3}{0+1}=-3\)

b) Ta có: B = \(\frac{3}{x-3}+\frac{6x}{9-x^3}+\frac{x}{x+3}\)

B = \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

B = \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x+3}{x-3}\)

c)  Với x \(\ne\)\(\pm\)3; x \(\ne\)-1

Ta có: P = AB = \(\frac{x-3}{x+1}\cdot\frac{x+3}{x-3}=\frac{x+3}{x+1}=\frac{\left(x+1\right)+2}{x+1}=1+\frac{2}{x+1}\)

Để P \(\in\)Z <=> 2 \(⋮\)x + 1

<=> x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){0; -2; 1; -3}

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

25 tháng 4 2018

Nhận xét :

x2 lớn hơn 0 ( với mọi x dương )

y2 lớn hơn 0 ( với mọi y dương )

Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2  và y max 

Nhưng x + y = 2 

=> x = y = 1 

A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\) 

Vậy A min = 5 <=>  x = y = 1

25 tháng 4 2018

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2

AM-GM => x + y >= \(2\sqrt{xy}\)

=> \(2\sqrt{xy}\)<= 2

=> xy <= 1

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)

=> A >= 1/xy + 3/xy

=> A >= 4/xy

mà xy <= 1

=> A >= 4/1

=> A>= 4 

dấu bằng sảy ra khi x = y = 2/2 = 1

Vậy GTNN của A là 4 khi x = y = 1