Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 ﴾1﴿
3a +1 = m^2 ﴾2﴿
từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1
=> a = 2k﴾k+1﴿
vậy a chẵn .
a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1
﴾1﴿ + ﴾2﴿ được:
5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1
=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿
mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿
=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
Tổng của 10 số chính phương đầu tiên là : \(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)