Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{2^{3k}.2}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)
Vậy.....
Violympic vòng 15 à?
\(\frac{2n}{8k}=\frac{2.\left(3k+1\right)}{8k}=\frac{6k+2}{8k}=\frac{2.\left(3k+1\right)}{2.4k}=\frac{3k+1}{4k}\)
Vậy với n=3k+1 thì \(\frac{2n}{8k}=\frac{3k+1}{4k}\)
Thay vào thì \(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)
Vậy với n=3k+1 thì \(\frac{2^n}{8^k}\)=2
Ta thấy :
36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7
<=> 36n+1 - k . 33n + 9 ⋮ 7
Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )
Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )
Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )
Bài 1:
Để \(A=\frac{a-5}{10-a}\) là số hữu tỉ dương
=> \(a-5\ge0\Rightarrow a\ge5\)
\(10-a\ge0\Rightarrow a\ge10\)
KL: a lớn hơn hoặc bằng 10 thì A là 1 số hữu tỉ dương
Bài 2: tìm n thuộc Z, để x = 2n-1/n-1 ; y = n-1/2n-1 là số nguyên ( bài 2 bn thiếu điều kiện thì phải
a) ta có: \(x=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2.\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để x nguyên
=> 1/n-1 nguyên
=> 1 chia hết cho n-1
=> n - 1 thuộc Ư(1)={1;-1}
nếu n - 1 = 1 => n = 2 (TM)
n-1 = -1 => n = 0 (TM)
KL:...
b) Để y nguyên
\(\Rightarrow\frac{n-1}{2n-1}\) nguyên
=> n - 1 chia hết cho 2n - 1
=> 2n - 2 chia hết cho 2n - 1
2n - 1 - 1 chia hết cho 2n - 1
mà 2n-1 chia hết cho 2n - 1
=> 1 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(1)={1;-1}
nếu 2n - 1 = 1 => 2n = 2 => n = 1 (TM)
2n - 1 = - 1 => 2n = 0 => n = 0 (TM)
KL:..
vì 2 nhân cho số nguyên dương nào cũng là số chẵn nên khi cộng cho 1 thì sẽ thành số lẽ
mà (-1) có số mũ là số chẵn thì = 1. nhưng có số mũ là số lẽ thì = -1
vậy suy ra : (-1)2n+1 = - 1
Nghĩ ra rồi :D
Số số hạng của dãy số trên là :
( 2n - 1 - 1 ) : 2 + 1
= 2n - 2 : 2 + 1
= 2 ( n - 1 ) : 2 + 1
= n - 1 + 1
= n
Tổng của dãy trên là :
( 2n - 1 + 1 ) . n : 2
= 2n . n : 2
= 2 . n^2 : 2
= n^2 ( đpcm )
học tốt ^^
\(\frac{2^n}{8^k}=\frac{2^n}{2^{3k}}=\frac{2^{3k+1}}{2^{3k}}=\frac{2^{3k}.2}{2^{3k}}=2\)