K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2023

Xin đa tạ 

25 tháng 2 2022

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x}-x\right)\\ =\lim\limits_{x→-\infty}\dfrac{x^3+x-x^3}{\left(\sqrt[3]{x^3+x}\right)^2+x\sqrt[3]{x^3+x}+x^2}\\ =\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{\left(\sqrt[3]{1+\dfrac{1}{x^2}}\right)^2+\sqrt{1+\dfrac{1}{x^2}}+1}\\ =\lim\limits_{x\rightarrow-\infty}\dfrac{0}{1^2+1+1}=0\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

** Lần sau bạn chú ý viết đề bằng công thức toán để được hỗ trợ tốt hơn!

(biểu tượng $\sum$ ở góc màn hình bên trái)

Lời giải:\(\lim\limits_{x\to -\infty}(\sqrt[3]{6x^2-8x^3}+2x)=\lim\limits_{x\to -\infty}\frac{6x^2-8x^3+8x^3}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6x^2}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6}{\sqrt[3]{\frac{36}{x^2}-\frac{96}{x}+64}-2\sqrt[3]{\frac{6}{x}-8}+4}\)

\(=\frac{6}{\sqrt[3]{64}-2\sqrt[3]{-8}+4}=\frac{1}{2}\)

 

 

 

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

** Lần sau bạn chú ý viết đề bằng công thức toán để được hỗ trợ tốt hơn!

(biểu tượng $\sum$ ở góc màn hình bên trái)

Lời giải:\(\lim\limits_{x\to -\infty}(\sqrt[3]{6x^2-8x^3}+2x)=\lim\limits_{x\to -\infty}\frac{6x^2-8x^3+8x^3}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6x^2}{\sqrt[3]{(6x^2-8x^3)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}\)

\(=\lim\limits_{x\to -\infty}\frac{6}{\sqrt[3]{\frac{36}{x^2}-\frac{96}{x}+64}-2\sqrt[3]{\frac{6}{x}-8}+4}\)

\(=\frac{6}{\sqrt[3]{64}-2\sqrt[3]{-8}+4}=\frac{1}{2}\)

 

 

 

5 tháng 3 2021

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{6x^2}{\sqrt[3]{\left(6x^2-8x^3\right)^2}-2x\sqrt[3]{6x^2-8x^3}+4x^2}=\dfrac{3}{2}\)

5 tháng 3 2021

Kết quả bằnt 1/2 í bạn 🥺