K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

1) (a+b)^2=a^2+2ab+b^2

2) (a-b)^2=a^2-2ab+b^2

3) a^2-b^2=(a-b)(a+b)

4) (a+b)^3=a^3+3a^2b+3ab^2+b^3

5) (a-b)^3=a^3-3a^2b+3ab^2-b^3

6) a^3+b^3=(a+b)(a^2-ab+b^2)

7) a^3-b^3=(a-b)(a^2+ab+b^2)

và còn nhiều hằng đẳng thức bổ sung khác nhưng mình chỉ nêu những cái cơ bản ra thôi

31 tháng 7 2016

Có mình 

31 tháng 7 2016

\(2\left(x-1\right)^2-4\left(3+x^2\right)+2x\left(x-5\right)\)

\(2.x^2-2.x.1+1^2-12-4x^2+2x^2-10x\)

\(2x^2-2x+1-12-4x^2+2x^2-10x\)

\(-12x-11\)

19 tháng 5 2021

1. Bình phương của một tổng

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,} {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

2. Bình phương của một hiệu

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,} {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

3. Hiệu hai bình phương

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,} {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

4. Lập phương của một tổng

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,} {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

5. Lập phương của một hiệu

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,} {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

6. Tổng hai lập phương

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

7. Hiệu hai lập phương

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

19 tháng 5 2021

1. Bình phương của một tổng

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,} {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

2. Bình phương của một hiệu

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,} {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

3. Hiệu hai bình phương

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,} {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

4. Lập phương của một tổng

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,} {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

5. Lập phương của một hiệu

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,} {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

6. Tổng hai lập phương

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

7. Hiệu hai lập phương

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

31 tháng 10 2017

Bảy hằng đẳng thức đáng nhớ:

    1) (A + B)2 = A2 + 2AB + B2

    2) (A – B)2 = A2 – 2AB + B2

    3) A2 – B2 = (A – B)(A + B)

    4) (A + B)3 = A3 + 3A2B + 3AB2 + B3

    5) (A – B)3 = A3 – 3A2B + 3AB2 – B3

    6) A3 + B3 = (A + B)(A2 – AB + B2)

    7) A3 – B3 = (A – B)(A2 + AB + B2)

Lấy đâu ra 5 zạy ta:)?

26 tháng 8 2016

tui chỉ biết 7 hăng cơ bản thôi

6 tháng 9 2016

7 hằng đẳng thức cơ bản:

1, (a + b)2 = a+ 2ab + b2

2, (a _ b)2 = a2 _ 2ab + b2

3, a- b2 = ( a - b ). (a + b )

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

Mở rộng :

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

9. (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac


10. (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc

11. a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)


12. a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)

13. (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)

14. a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac) 

15. (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)

16. (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2

17. (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc

19. ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33

20.ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
 

10 tháng 10 2018
  1. Bình phương của một tổng:

    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

  2. Bình phương của một hiệu:

    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

  3. Hiệu hai bình phương:

    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

  4. Lập phương của một tổng:

    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

  5. Lập phương của một hiệu:

    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

  6. Tổng hai lập phương:

    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

  7. Hiệu hai lập phương:

    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Các hệ thức liên quan

  1. {\displaystyle (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\,}
  2. {\displaystyle a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)\,}
  3. {\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}
  4. {\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}
  5. {\displaystyle (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2ab-2bc-2ca\,}
10 tháng 10 2018

cương khùng 

snvv