Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
Đặt \(A=\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\) và \(x=ab+1;\) \(y=bc+1;\) \(z=ca+1\) \(\left(\text{*}\right)\)
Khi đó, với các giá trị tương ứng trên thì biểu thức \(A\) trở thành: \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\)
Áp dụng bất đẳng thức Cauchy cho bộ ba phân số không âm của biểu thức trên (do \(a,b,c>0\)), ta có:
\(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\ge3\sqrt[3]{\frac{cx^2}{b^2y}.\frac{ay^2}{c^2z}.\frac{bz^2}{a^2z}}=3\sqrt[3]{\frac{xyz}{abc}}\) \(\left(\text{**}\right)\)
Mặt khác, do \(ab+1\ge2\sqrt{ab}\) (bất đẳng thức AM-GM cho hai số \(a,b\) luôn dương)
nên \(x\ge2\sqrt{ab}\) \(\left(1\right)\) (theo cách đặt ở \(\left(\text{*}\right)\))
Hoàn toàn tương tự với vòng hoán vị \(a\) \(\rightarrow\) \(b\) \(\rightarrow\) \(c\) và với chú ý cách đặt ở \(\left(\text{*}\right)\), ta cũng có:
\(y\ge2\sqrt{bc}\) \(\left(2\right)\) và \(z\ge2\sqrt{ca}\) \(\left(3\right)\)
Nhân từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được \(xyz\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)
Do đó, \(3\sqrt[3]{\frac{xyz}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=3\sqrt[3]{8}=6\) \(\left(\text{***}\right)\)
Từ \(\left(\text{**}\right)\) và \(\left(\text{***}\right)\) suy ra được \(A\ge6\), tức \(\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\ge6\) (điều phải chứng minh)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=1\)