Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có |2x - 3| + |2x + 1| = |3 - 2x| + |2x + 1| \(\ge\left|3-2x+2x+1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (3 - 2x)(2x + 1) \(\ge\)0
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}3-2x\le0\\2x+1\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1,5\\x\le-\frac{1}{2}\end{cases}}\left(\text{loại}\right)\)
TH2 : \(\hept{\begin{cases}3-2x\ge0\\2x+1\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1,5\\x\ge-0,5\end{cases}}\Rightarrow-0,5\le x\le1,5\)
Vậy -0,5 \(\le x\le1,5\)là giá trị phải tìm
2) ||4x - 2| - 2| = 4
=> \(\orbr{\begin{cases}\left|4x-2\right|-2=4\\\left|4x-2\right|-2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}\left|4x-2\right|=6\\\left|4x-2\right|=-2\left(\text{loại}\right)\end{cases}}\)
=> |4x - 2| = 6
=> \(\orbr{\begin{cases}4x-2=6\\4x-2=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x \(\in\left\{2;-1\right\}\)là giá trị cần tìm
Gọi số cộng thêm là n \(\left(ĐK:n\ne0\right)\)
Ta có: \(\frac{a}{b}=\frac{a+n}{b+n}\)
\(\Rightarrow a\left(b+n\right)=b\left(a+n\right)\\ \Rightarrow ab+an=ba+bn\\ \Rightarrow an=bn\\ \Rightarrow a=b\)
Vậy \(\frac{a}{b}\) có thể là bất kì phân số nào sao cho a = b
Gọi số cộng thêm vào là c \(\left(c\ne0\right).\)
Ta có: \(\frac{a}{b}=\frac{\left(a+c\right)}{\left(b+c\right)}\)
\(\Rightarrow a.\left(b+c\right)=b.\left(a+c\right)\)
\(\Rightarrow ab+ac=ba+bc.\)
\(\Rightarrow ac=bc\) (trừ cả 2 vế cho \(ab\))
Vì \(ac=bc\) và \(c=c.\)
\(\Rightarrow a=b.\)
\(\Rightarrow\frac{a}{b}=1.\)
Vậy \(\frac{a}{b}\) có thể là mọi số sao cho \(a=b.\)
Chúc bạn học tốt!
Nếu \(m< 0\)thì:
\(m+\left|m\right|+n=m-m+n=n=8\)
Khi đó \(\left|n\right|+m-n=8+m-8=m=9>0\)(loại).
Nếu \(n\ge0\)thì:
\(\left|n\right|+m-n=n+m-n=m=9\)
Khi đó \(m+\left|m\right|+n=9+9+n=8\Leftrightarrow n=-10\)(loại)
Do đó \(m\ge0,n< 0\).
\(\hept{\begin{cases}m+\left|m\right|+n=8\\\left|n\right|+m-n=9\end{cases}}\Leftrightarrow\hept{\begin{cases}2m+n=8\\m-2n=9\end{cases}}\Leftrightarrow\hept{\begin{cases}m=5\\n=-2\end{cases}}\left(tm\right)\)
\(m-n=5-\left(-2\right)=7\)
Có \(a< 0\)và \(ab< 0\)suy ra \(b>0\)
\(a< 0< b\)
ta có : \(A=\left|b-a+1\right|-\left|a-\left(-b\right)-2\right|\)
\(=b-a+1-\left|a+b-2\right|\)
Nếu \(a+b-2\ge0\Rightarrow ab\ge2\)
Ta có : \(A=b-a+1-\left(a+b-2\right)=3-2a\)
Nếu \(a+b-2< 0\Rightarrow a+b< 2\)
Ta có : \(A=b-a+1+a+b-2=2b-1\)