K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=n\cdot\left[n^2\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left(n^3-n-6n-6\right)\left(n^3-n-6n+6\right)\)

\(=n\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\cdot\left(n-1\right)\left(n+3\right)\left(n-2\right)\)

Vì đây là tích của 7 số nguyên liên tiếp 

nên \(A⋮7!=5040\)

hay \(A⋮105\)

15 tháng 10 2020

Dễ dàng phân tích được

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Rightarrow\left\{{}\begin{matrix}A⋮3\\A⋮5\\A⋮7\end{matrix}\right.\)

Do \(\left(3;5;7\right)=1\Rightarrow A⋮105\)

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

16 tháng 2 2019

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

17 tháng 2 2019

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

17 tháng 2 2019

1. \(x^3+6x^2+11x\) +6

= \(x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

= \(\left(x+3\right)\left(x^2+3x+2\right)\)

=(x+3)(x+1)(x+2)

2. Sua \(n^3\left(n^2+7\right)^2-36n\) thanh \(n^3\left(n^2-7\right)^2-36n\)

A= \(n^3\left(n^2-7\right)^2-36n\)

= \(n^7-14n^5+49n^3-36n\)

= (n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)

Day la tich cua 7 so tu nhien lien tiep=> A \(⋮105\)

30 tháng 1 2017

M=n^3(n^2−7)^2−36n

n[n^2(n^2−7)^2−36]

= n.[(n^3−7n)^2−6^2]

= n(n^3−7n−6)(n^3−7n+6)

=(n−3)(x−2)(n−1)n(n+1)(n+2)(n+3)

M luôn chia hết cho 2;3;5. Các số này đôi 1 nguyên tố cùng nhau => B chia hết cho 105

 
17 tháng 5 2017

Đặt \(n^3\left(n^2-7\right)^2-36n=A\)

Ta có :

\(n^3\left(n^2-7\right)^2-36n\)

\(=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(=n.\left[\left(n^3-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-2\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Ta có \(A⋮3;5;7\) ( vì có \(\left(n-3\right)\left(n-2\right)\left(n-2\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là 7 số tự nhiên liên tiếp )

Mà 3; 5; 7 là đôi một nguyen tố cùng nhau

\(\Rightarrow A⋮3.5.7\Rightarrow A⋮105\)

17 tháng 5 2017

Very easy!!! Bạn chỉ cần phân tích đa thức thành nhân tử là ok

Ta có: n3.(n2-7)2 -36n = \(n^3.\left(n^4-14n^2+49\right)-36n\)

= \(n^7-14n^5+49n^3-36n\)

= \(n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)

= \(n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)

= \(\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)

= \(n\left(n^1-1\right)\left[\left(n^4+12n^2+36\right)-25n^2\right]\)

= \(n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)

= \(n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)

= \(n\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\) (*)

Mà (*) là tích của số nguyên liên tiếp => (*) \(⋮\) 7! ( Đây là tính chất nhé)

=> (*) \(⋮\) 5040 => (*) \(⋮\) 105 => đpcm

P/s : Bạn có thể xét tính chẳn lẻ của n cũng đc nhưng lâu hơn