Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)
Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
theo đầu bài ta có:
p(x)=(x-1).q(x)+3 1
p(x)=(x-2).g(x)+7 2
p(x)=(x-1)(x-2).(x^2+-3).ax+b
(vì đa thức thứ ba có đa thức chia bậc 2 nên đa thức dư bậc nhất)
thay x=1 vào 3 ta đc p(x)=a+b mà p(1)=3
thay x=2 vào 3 ta đc p(x)=2a+b mà p(2)=7
từ đso => 2a+b-a-b=7-3=4
=>a=4
b=-1
dư của phép chia là 4x-1
=>(x-1)(x-2).(x^2-3)+4x-1
=(x^2-2x-x+2)(x^2-3)+4x-1
=(x^2-3x+2)(x^2-3)+4x-1
=x^4-3x^2-3x^3+9x+2x^2-6+4x-1
=x^4-3x^3-x^2+13x-7
\(\left(n^3-1\right)^{111}.n.\left(n^2-1\right)^{333}\) chia hết cho n ( tức là dư 0 )
Vì mấy nhân cho n đều chia hết cho n
cảm ơn nha, nhưng mk vt sai đề:( n3-1)111.(n2-1)333 ms đúng