Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Bài 2 :
n + 5 chia hết cho n
=> 5 chia hết cho n
=> n thuộc Ư(5) = {1 ; 5}
b) 2016.(n - 3) + 11 chia hết cho n - 3
=> 11 chia hết cho n - 3
=> n - 3 thuộc Ư(11) = {1 ; 11}\
=> n = {4 ; 14}
c) n2 + 2n + 3 chia hết cho n + 2
n.(n + 2) + 3 chia hết cho n + 2
=> 3 chia hết cho n + 2
=> n + 2 thuộc U(3) = {1 ; 3}
=> n = {-1 ; 1}
a) 2(x + 2) + 3x = 29
2x + 4 + 3x = 29
5x = 29 - 4 = 25
x = 5
b) 720:[41 - (2x-5)]=23 . 5
41 - (2x - 5) = 720 : 40 = 180
2x - 5 = 41 - 180 = -139
2x = -139 + 5 = -134
x = (-134) : 2 = -67
c) (x + 1) + (x + 2) + ..... + (x + 100) = 5750
x + 1 + x + 2 + ........ + x + 100 = 5750
100x + (1 + 2 + 3 + ........... + 100) = 5750
100x + 5050 = 5750
100x = 700
x = 7
Bài 1:
a){x-[25-(92-16.5)30.243]-14}=1
=>{x-[25-1.243]-14}=1
=>x-(-13799)-14=1
=>x-(-13813)=1
=>x=1+(-13813)
=>x=-13812
b) (x+1)+(x+2)+....+(x+100)=7450
=>100x+(1+2+...+100)=7450
=>100x+5050=7450
=>x=(7450-5050):100
=>x=24
Bài 2:
S=3+6+...+2016
S=(2016-3):3+1=672 ( số số hạng)
S=(2016+3)x672:2=678384
Bài 3 dài lắm mỏi tay lắm rùi
\(n^3-13n=n\left(n^2-1\right)-12n.\)
\(=n\left(n-1\right)\left(n-2\right)-12n\)
Vậy chia hết cho 6 vì
n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6
12n chia hết cho 6
Con " Nguyễn Huyền Trang " đéo biết thì trả lời làm cái l*n gì
\(\left(n+1\right)\left(n+2\right)...\left(2n\right)=\frac{1.2.3.....n.\left(n+1\right)\left(n+2\right)...\left(2n\right)}{1.2.3.....n}\)
\(=\frac{1.3.5.....\left(2n-1\right).2.4.6.....\left(2n\right)}{1.2.3.....n}=\frac{1.3.5.....\left(2n-1\right).2^n\left(1.2.3.....n\right)}{1.2.3.....n}\)
\(=1.3.5.....\left(2n-1\right).2^n⋮2^n\).