K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

n(n^2+1).(n^2+4)=n(n^2-4+5).(n^2-1+5)=[n(n^2-4+5n)].[(n^2-1)+5]=n.(n^2-4)

=n(n^2-4).(n^2-1)+5n(n^2-4+n^2+4)=(n-2).(n-1).n.(n+1).(n+2)+10n^3

vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số tự nhiên liên tiếp chia hết cho 5

10n^3 có chứa thừa số 5 nên chia hết cho 5

không biết đúng hay sai nữa :))