K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2023

a)

+ Vật AB cách thấu kính một khoảng d = 30 cm

Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật

b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Rightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)

Áp dụng công thức tính thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{15h'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)

\(\Rightarrow h'=1\left(cm\right)\)

Vậy ảnh cao 1(cm)

Khoảng cách từ ảnh đến thấu kính:

\(d'=15h'=15.1=15\left(cm\right)\)

24 tháng 4 2023

a) 

+ Vật AB cách thấu kính một khoảng d = 30 cm

Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật

b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Leftrightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)

Áp dụng công thức tính thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)

\(\Rightarrow h'=1\left(cm\right)\)

Vậy chiều cao của ảnh là 1(cm)

Khoảng cách từ ảnh đến thấu kính:

\(d'=15h'=15.1=15\left(cm\right)\)

15 tháng 3 2021

A B O F F' A' B'

b) ảnh A'B' là ảnh ảo ngược chiều và nhỏ hơn vật

c) ΔOAB∞ΔOA'B'

\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{5}{OA'}\)  1

ΔOFI∞ΔFA'B'

\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}\dfrac{OF}{OF-OA}\)

\(\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{3}{3-OA'}\)   2

Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{3}{3-OA'}\)

⇔1(3-OA') = 3. OA'

⇔3- 3.OA' = 3.OA'

⇔-3.OA' -3. OA' = -3

⇔-6.OA' = -3

⇔OA' = -9

Thay OA'= -9 vào 1

\(\dfrac{1}{A'B'}=\dfrac{5}{-9}\Rightarrow A'B'=\dfrac{1.\left(-9\right)}{5}=-1.8\)