K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

Chọn gốc thời gian lúc vật ở vị trí 2,5√2 (em ghi sai chổ đó)

 

23 tháng 8 2016

Ta có: 31,4 \approx 10 \pi (s)
Con lắc thực hiện 100 dao động hết 31,4 (s)
\Rightarrow \Delta t = NT
\Rightarrow T = \frac{\Delta t}{N} = \frac{10 \pi}{100} = \frac{\pi}{10} (s)
\omega = \frac{2 \pi}{T} = 20 (rad/s)
Lại có gốc thời gian là lúc quả cầu có li độ 2cm và đang chuyển động theo chiều dương của trục tọa độ với vận tốc có độ lớn 40\sqrt{3}cm/s
v^2 = \omega ^2 (A^2 - x^2) \Rightarrow A = \sqrt{x^2 + \frac{v^2}{\omega ^2} } = 4 (cm)
và cos\varphi = \frac{x}{A} = \frac{1}{2} \Rightarrow \varphi = - \frac{\pi}{3} (rad)
\Rightarrow x = 4 cos (20 t - \pi/3)cm

16 tháng 6 2017

Làm sao ra pi/3 vây bạn

12 tháng 9 2017

30 tháng 5 2019

Chọn C

+ Để trong quá trình dao động ba vật luôn thẳng hàng thì: 

=> 2x2 = x1 +x3 => x1 = 2x2 – x3

+ Ta có thể sử dụng phương pháp tổng hợp dao động bằng số phức trên máy tính =>  x1 = 20cos(20t + π/2) cm.

2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)

30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???