Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ⇒ Δ l l 0 = F E S
Với S = π d 2 4 = 3 , 14 ( 5.10 − 2 ) 2 4 = 3 , 14.25 2 10 − 4 4 S = 19 , 625.10 − 4 ≈ 19 , 6.10 − 4 ( m 2 )
Vậy độ biến dạng tỉ đối của thanh Δ l l 0 là
Δ l l 0 = 3450 7.10 10 .19 , 6.10 − 4 = 345 7.19 , 6 10 − 5 Δ l l 0 ≈ 2 , 5.10 − 5
Đáp án: D
Lực nén vào thanh thép bằng đúng lực đàn hồi xuất hiện trong thanh.
Ta có:
Độ co tỉ đối:
Chọn D
Lực nén vào thanh thép bằng đúng lực đàn hồi xuất hiện trong thanh.
d = 20 mm = 20.10-3m
E = 2.1011 Pa
Fnén = 1,57.105 N
Ta có:
→ Độ biến dạng tỉ đối của thanh:
Đáp án: D
Lực nén vào thanh thép bằng đúng lực đàn hồi xuất hiện trong thanh.
Chọn đáp án A
Hướng dẫn:
Áp dụng định luật Húc về độ biến dạng tỉ đối của vật rắn:
Ta có : F = k△l = \(\frac{E.S}{l_0}\). | △l |
→ \(\frac{\triangle l}{l_0}=\frac{F}{E.S}=\frac{157.10^3}{2.10^{11}.\left(10^{-2}\right)^2.3,14}=25.10^{-4}=0,25.10^{-2}\)
Vậy độ biến dạng tỉ đối của thanh là \(\frac{\triangle l}{l_0}=0,25.10^{-2}\)
@phynit
Em trả lời 100% . Không có sự tự hỏi tự trả lời đâu ạ ( Em nói để thầy biết và không nghĩ oan cho em )
d = 20 mm
E = 2.1011 Pa
Fnén = 1,57.105 N
Tìm \(\varepsilon=\dfrac{\left|\Delta t\right|}{l_0}=?\)
Ta có: \(F=k\Delta l=\dfrac{ES}{l_0}\left|\Delta t\right|\)
\(\Rightarrow\dfrac{\Delta l}{l_0}=\dfrac{F}{ES}=25.10^4=0,25.10^{-2}\)
Vậy độ biến dạng tỉ đối của thanh là : \(\dfrac{\left|\Delta l\right|}{l_0}=2,5.10^{-3}\)
Ta có : F = k\(\triangle\)l = \(\frac{E.S}{l_o}\). | \(\triangle\)l |
→ \(\frac{\triangle l}{l_0}=\frac{F}{E.S}=\frac{157.10^3}{2.10^{11}.\left(10^{-2}\right)^2.3,14}\)= 25 . 10-4 = 0,25 .10-2
Vậy độ biến dạng tỉ đối của thanh là \(\frac{\triangle l}{l_0}\)= 0,25 . 10-2
σ = \(\frac{F}{S}=\frac{F}{\frac{d^2.\pi}{4}}=\frac{3450}{\frac{3,14}{4}.\left(5.10^{-2}\right)^2}=17,57.10^5\)
ϵ = \(\frac{\triangle l}{l_0}=\frac{\sigma}{E}=\frac{17,57.10^5}{7.10^{10}}=0,000025\)
Thôi nhá
Đừng tử hỏi tự trả lời nữa
Không ai cạnh tranh đc đâu