K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2015

m là số tự nhiên nên ta chọn m nhỏ nhất là 0.

Khi đó m . 7920 = 0 . 7920 = 0 = 02

         Vậy GTNN của m là 0 thỏa mãn điều kiện

2 tháng 2 2015

3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9

mà 2n-n=n=>n chia hết cho 9 => đpcm

16 tháng 1 2017

câu 1 bạn châu sai rồi

29 tháng 12 2021

\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)

\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)

\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)

\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương

8 tháng 8 2019

Gọi a là số tự nhiên cần timg

Theo bài ra ta có:

  \(420.a=k^2\)

Vì a nhỏ nhất mà \(420.0=0^2\)là một số chính phương

=> Số tự nhiên a cần tìm : a=0

( Nhận xét: Nếu đề bài bảo tìm số tự nhiên nhỏ nhất khác 0 thì sẽ có cách giải hay hơn)

1)Cho một số tự nhiên có hai chữ số. Biết rằng tổng các số tự nhiên liên tiếp bắt đầu từ 1 đến số này là một số mà hai chữ số tận cùng của nó chính bằng số có hai chữ số ban đầu. Tìm số ban đầu.2)Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 29 thì dư 5, còn chia số đó cho 31 thì dư 28?3)Khi chia 1 số gồm 6 chữ số P giống nhau cho số Q gồm 4 chữ số giống nhau thì được...
Đọc tiếp

1)Cho một số tự nhiên có hai chữ số. Biết rằng tổng các số tự nhiên liên tiếp bắt đầu từ 1 đến số này là một số mà hai chữ số tận cùng của nó chính bằng số có hai chữ số ban đầu. Tìm số ban đầu.

2)Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 29 thì dư 5, còn chia số đó cho 31 thì dư 28?

3)Khi chia 1 số gồm 6 chữ số P giống nhau cho số Q gồm 4 chữ số giống nhau thì được thương là 233 và 1 số dư là R nào đó .Sau khi bỏ đi 1 chữ số của số P và 1 chữ số của số Q thì thương không thay dổi và số dư giảm 1000.Tìm số Q

4)Tim ba số a,b,c, Biết 1+2+3+...+bc=abc

5)Từ ba chữ số đôi một khác nhau và khác nhau và khác 0, ta lập tất cả các số có ba chữ số đôi một khác nhau. Biết rằng tổng các số lập được là 2886, hiệu giữa số lớn nhất và số nhỏ nhất trong các số lập được là 495. Các chữ số đó là: ......;.....;.......(viết các chữ số theo giá trị tăng dần)

 

0
24 tháng 8 2017

giải : gọi số cần tìm là ab (a khác 0; a,b<10)

ta có : ab+ba=10a+b+10b+aq=11a+11b=11(a+b)

vì a+b là số chính phương nên a+b chia hết cho 11

mà 1 lớn hơn hoặc bằng a <10

0 lớn hơn hoặc bằng b<10

= 1 lớn hơn hoặc bằng a+b<20

=a+b=11

ta có bảng sau :

 a

2

3

4

5

6

7

8

9

b

9

8

7

6

5

4

3

2

vậy có 8 số thỏa mãn đề bài 

24 tháng 8 2017

Cách 1: Tách số hạng thứ hai 

          x2 – 6x + 8  = x2 – 2x – 4x + 8

                            =  x(x – 2) – 4( x – 2)

         = (x –  )(x –  4).

Cách 2:  Tách số hạng thứ 3

          x - 6x + 8 = x2 – 6x + 9 – 1

                            = (x – 3)2 – 1  = ( x – 3 – 1)(x – 3 + 1)

                           = (x –  4)( x – 2).

Cách 3: x – 6x + 8  =  x2 – 4 – 6x + 12

                                     =  ( x – 2)(x + 2) – 6(x –  2)

                                       = (x –  2)(x –  4)

10 tháng 12 2018

ai nhanh tôi k cho

26 tháng 2 2019

Tự túc là hạnh phúc! OK?

7 tháng 10 2018

Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )

Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2  < n ( n + 1 ) < n + 1 2

n 2 và  n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.
6 tháng 4 2017

Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )

Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒  n 2 < n ( n + 1 ) <  n + 1 2

n 2  và  n + 1 2   là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.