Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Xét các số có 9 chữ số khác nhau:
- Có 9 cách chọn chữ số ở vị trí đầu tiên.
- Có cách chọn 8 chữ số tiếp theo
Do đó số các số có 9 chữ số khác nhau là:
Xét các số thỏa mãn đề bài:
- Có cách chọn 4 chữ số lẻ.
- Đầu tiên ta xếp vị trí cho chữ số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp.
- Tiếp theo ta có cách chọn và xếp hai chữ số lẻ đứng hai bên chữ số 0.
- Cuối cùng ta có 6! cách xếp 6 chữ số còn lại vào 6 vị trí còn lại.
Gọi A là biến cố đã cho, khi đó
Vậy xác suất cần tìm là
Đáp án B
Khi đó
- Số cách chọn chữ số α có 5 cách chọn vì α ≠ 0 .
- Số cách chọn chữ số b có 5 cách chọn vì b ≠ α .
- Số cách chọn chữ số c có cách chọn vì c ≠ α và c ≠ b .
Do đó tập S có 5.5.4 = 100 phần tử.
Không gian mẫu là chọn ngẫu nhiên1 số từ tập S .
Suy ra số phần tử của không gian mẫu là Ω = C 100 1 = 100 .
Gọi X là biến cố "Số được chọn có chữ số cuối gấp đôi chữ số đầu". Khi đó ta có các bộ số là 1 b 2 hoặc 2 b 4 thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả số thỏa yêu cầu.
Suy ra số phần tử của biến cố X là Ω X = 8 .
Vậy xác suất cần tính P ( X ) = Ω X Ω = 8 100 = 2 25 .
Chọn C
Có 2 bộ số {a;b;c} có tổng các chữ số bằng 5 là: {0;1;4}, {0;2;3}, mỗi bộ số có 3! hoán vị nên có tất cả 12 khả năng.
Do đó xác suất để người đó bấm máy một lần đúng số cần gọi là 1 12 .
Không gian mẫu: \(n\left(\Omega\right)=10!\)
Chọn 5 chữ số từ 6 chữ số còn lại (khác 0,3,6,8): có \(C_6^5\) cách
Hoán vị 6 chữ số (5 chữ số được chọn nói trên và số 8): \(6!\) cách
Tổng cộng: \(6!.C_6^5\) số
Xác suất: \(P=\dfrac{6!.C_6^5}{10!}=...\)