Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi tử số của phân số cần tìm là x (x>0)
theo bài phân số ban đầu là x / (x+13)
do đó (x +3) / (x+13 - 5 ) = 3 / 4
<=> 4(x+3) = 3(x+8)
<=>4x + 12 = 3x +24
<=>x = 12
<=>phân số cần tìm là 12 / (12+13) = 12 / 25
vậy phân số cần tìm là 12 / 25
Gọi x là tử số. Điểu kiện: x ∈Z, x ≠ -11 và x ≠ -7
Mẫu số là x + 11.
Tử số tăng thêm 3: x + 3
Mẫu số giảm đi 4: (x + 11) – 4 = x + 7
Phân số mới bằng 3/4 nên ta có phương trình:
(x + 3)/(x + 7) = 3/4
⇔ 4(x + 3) = 3(x + 7)
⇔ 4x + 12 = 3x + 21
⇔ 4x – 3x = 21 – 12
⇔ x = 9 (thỏa mãn)
Tử số là 9, mẫu số là 9 + 11 = 20
Vậy phân số đã cho là 9/20 .
gọi a là tử số thì a+13 là mẫu số
nếu tăng tử thêm 3 ,giảm mẫu đi 5 thì được phân số mới là 5/4 nên
\(\frac{a+3}{a+13-5}=\frac{5}{4}\Leftrightarrow\frac{a+3}{a+8}=\frac{5}{4}\)
nên 4(a+3)=5(a+8)
4a+12=5a+40
a=-28
nên tử số là -28
mẫu số là -28+13=-15
nên phân số cần tìm là -28/-15=28/15
hihiihi
Gọi z là tử của phân số
Khi đó mẫu của phân số là \(z-13\)
Phân số ta cần tìm có dạng: \(\dfrac{z}{z-13}\)
Nếu tăng tử lên 3 đơn vị và giảm mẫu đi 4 đơn vị thì được phân số bằng với phân số \(\dfrac{3}{5}\) nên ta có phương trình:
\(\dfrac{z+3}{z-13-4}=\dfrac{3}{5}\left(z\ne17\right)\)
\(\Leftrightarrow\dfrac{z+3}{z-17}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{5\left(z+3\right)}{5\left(z-17\right)}=\dfrac{3\left(z-17\right)}{5\left(z-17\right)}\)
\(\Leftrightarrow5z+15=3z-51\)
\(\Leftrightarrow5z-3z=-51-15\)
\(\Leftrightarrow2z=-66\)
\(\Leftrightarrow z=\dfrac{-66}{2}=-33\left(tm\right)\)
Vậy phân số ta cần tìm là: \(\dfrac{z}{z-13}=\dfrac{-33}{-33-13}=\dfrac{-33}{-46}=\dfrac{33}{46}\)
Hiệu số phần bằng nhau:
5-3=2(phần)
Nếu tăng tử số 3 đơn vị, giảm mẫu số 4 đơn vị được phân số mơi có mẫu số bẻ hơn tử số:
13 + (4+3)= 20 (đơn vị)
Tử số mới là:
20:2 x3=30
Tử số ban đầu là:
30-3=27
Mẫu số ban đầu là:
27-13=14
Phân số ban đầu là: 27/14
Gọi tử số là x
Mẫu số là: x+8
Theo đề bài ta có:
\(\frac{x+2}{x+8-3}=\frac{3}{4}\)
\(\Leftrightarrow\frac{x+2}{x+5}=\frac{3}{4}\)
\(\Leftrightarrow3\cdot\left(x+5\right)=4\cdot\left(x+2\right)\)
\(\Leftrightarrow3x+15=4x+8\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
Suy ra: tử số là 7
Mẫu số là: 7+8 = 15
Vậy phân số cần tìm là: \(\frac{7}{15}\)
ta có:x/(x+5) là phân số càn tìm
x+3/(x+5-3)=7/6 =>6(x+3)=7(x+2)=>6x+18=7x+14=>x=4
vậy phân số cần tìm là 4/9
+) Tử số ban đầu gọi là x (x: nguyên, dương)
Khi đó mẫu số ban đầu là 11 +x
+) Sau khi thêm 3 vào tử số ban đầu => Tử số mới gọi là 3+x
Sau khi giảm 4 đơn vị ở mẫu số ban đầu là 11+x-4 hay 7+x
Vì sau khi thêm và bớt ở từ và mẫu số, ta có phân số mới bằng phân số \(\dfrac{3}{4}\) nên:
\(\dfrac{3+x}{7+x}=\dfrac{3}{4}\\ < =>3\left(7+x\right)=4\left(3+x\right)\\ < =>21+3x=12+4x\\ < =>3x-4x=12-21\\ < =>-x=-9\\ =>x=9\left(TMĐK\right)\)
=> Tử số ban đầu là 9. Mẫu số ban đầu là : 9+11= 20
Vậy: Phân số ban đầu là \(\dfrac{9}{20}\)
Gọi phân số cần tìm là \(\frac{a}{a+15}\left(a\ne-15\right)\)
Theo đề, ta có phương trình: \(\frac{a+3}{a+15-2}=\frac{2}{3}\)
\(\Leftrightarrow\frac{a+3}{a+13}=\frac{2}{3}\Leftrightarrow3a+9=2a+26\)
\(\Leftrightarrow a=17\)
Vậy phân số cần tìm là \(\frac{17}{32}\)