Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: 1 giờ 30 phút = 1,5 giờ
Gọi vận tốc của xe máy là \(a-10\) ( km/giờ ) thì vận tốc của ô tô là \(\left(a-10\right)+20=a+10\) ( km/giờ ).
Từ lúc khởi hành, thời gian để xe máy và ô tô gặp nhau ( chính là thời gian để xe máy đi từ A đến điểm gặp nhau ) là:
\(\frac{100}{\left(a-10\right)+\left(a+10\right)}=\frac{100}{2a}=\frac{50}{a}\) ( giờ )
Thời gian để xe máy đi từ A đến B là: \(\frac{100}{a-10}\) ( giờ )
Vậy thời gian để xe máy đi từ điểm gặp nhau đến B là 1,5 giờ, tương đương với phương trình: \(\frac{100}{a-10}-\frac{50}{a}\) ( giờ )
Từ đây ta có phương trình:
\(\frac{100}{a-10}-\frac{50}{a}=1,5\)
\(\Rightarrow\frac{100a-50\left(a-10\right)}{a\left(a-10\right)}=1,5\)
\(\Rightarrow\frac{100a-\left(50a-500\right)}{a^2-10a}=1,5\)
\(\Rightarrow\frac{50a+500}{a^2-10a}=1,5\)
\(\Rightarrow50a+500=1,5\left(a^2-10a\right)\)
\(\Rightarrow50a+500=1,5a^2-15a\)
\(\Rightarrow1,5a^2-15a-50a-500=0\)
\(\Rightarrow1,5a^2-65a-500=0\)
Ta có: \(\Delta=\left(-65\right)^2-4.1,5.\left(-500\right)=4225-\left(-3000\right)=7225\)
\(\Rightarrow\hept{\begin{cases}a_1=\frac{65+\sqrt{7225}}{2\cdot1,5}=\frac{65+85}{3}=\frac{150}{3}=50\\a_2=\frac{65-\sqrt{7225}}{2\cdot1,5}=\frac{65-85}{3}=\frac{-20}{3}=-6\frac{2}{3}\end{cases}}\)
Trường hợp a2 loại do lúc này a < 0 ( vô lí ) => a = 50
Vậy vận tốc xe máy là: 50 - 10 = 40 ( km/h )
vận tốc xe ô tô là: 50 + 10 = 60 ( km/h )
Gọi vận tốc ô tô tải là v (km/h)
=> Vận tốc ô tô taxi là v+10 (km/h)
Đổi: 30ph=0,5 (giờ)
Sau 30 phút thì ô tô tải đi được quãng đường là: 0,5.v
1/2 quãng đường AB là: 200:2=100 (km)
Theo bài ra ta có: \(\frac{100}{v+10}=\frac{100-0,5.v}{v}\)
<=> 100v=(v+10)(100-0,5v)
<=> 100v=100v+1000-0,5v2-5v
<=> 0,5v2+5v-1000=0
<=> v2+10v-2000=0
<=> v2-1600+10v-400=0
<=> (v-40)(v+40)+10(v-40)=0
<=> (v-40)(v+50)=0
=> v=40 (v=-50 loại)
=> Vận tốc xe tải là: v=40 (km/h)
=> Vận tốc xe taxi là: 40+10=50 (km/h)
Gọi vận tốc ô tô tải là x (km/h) thì vận tốc taxi là x + 10 (km/h).
Quáng đường AD là độ dại đoạn xe tải đi trong 30 phút. AD dài là: \(\frac{x}{2}\) (km) (vì 30' = 1/2 giờ)
2 ô tô gặp nhau tai C là trung điểm của AB => CB = AC = 200/2 = 100 (km) và DC = \(100-\frac{x}{2}\) (km)
Thời gian xe tải đi trên CD bằng thời gian taxi đi từ B đến C. Vậy ta có:
\(\frac{100-\frac{x}{2}}{x}=\frac{100}{x+10}\)
Đưa về phương trinh bậc hai sau:
\(x^2+10x-2000=0\)
Phương trình có 2 nghiệm là 40 và -50, ta loại nghiệm âm thì x = 40 (km/h)
Vậy vận tốc xa tải là 40 km/h, vận tốc taxi là: 40 + 10 = 50 km/h.
gọi v và v+15 ( v >0)
Ta có pt
\(\frac{90}{v}=\frac{90}{v+15}+1\)
bạn tự giải nhá!
\(\Leftrightarrow v^2\)+ 15v - 1350 =0
\(\Leftrightarrow\orbr{\begin{cases}v=30\\v=-45\left(l\right)\end{cases}}\)
\(\Rightarrow v+15=45\)
Vậy....
Gọi vận tốc của ô tô khi đi qua khu dân cư là x (km/h)
\(\Rightarrow\)vận tốc của ô tô khi đi trên đường là x+10 (km/h)
Theo đề bài thì thời gian xe đi hết quãng đường đó là:
t=\(\frac{8}{x}\)+\(\frac{4}{x+10}\)=1
\(\Rightarrow\)x=40 km/h
Vậy vận tốc của ô tô khi đi qua khu dân cư là 40 km/h
Học tốt
Tổng thời gian đi và về ( không tính thời gian nghỉ là ) :
7 giờ - 1 giờ 30 phút = 5 giờ 30 phút = 11/2 giờ
Gọi vận tốc lúc đi của ô tô là x ( km/h ; x > 0 )
Vận tốc lúc về nhanh hơn vận tốc lúc đi là 10km/h
=> Vận tốc lúc về = x + 10 km/h
Thời gian lúc đi = 150/x
Thời gian lúc về = 150/x+10
Tổng thời gian đi và về = 11/2 giờ
=> Ta có phương trình : \(\frac{150}{x}+\frac{150}{x+10}=\frac{11}{2}\)
Biến đổi VT của phương trình :
\(\frac{150}{x}+\frac{150}{x+10}=\frac{150\left(x+10\right)}{x\left(x+10\right)}+\frac{150x}{x\left(x+10\right)}=\frac{150x+1500+150x}{x\left(x+10\right)}=\frac{300x+1500}{x\left(x+10\right)}\)
<=> \(\frac{300x+1500}{x\left(x+10\right)}=\frac{11}{2}\)
<=> \(\frac{2\left(300x+1500\right)}{2x\left(x+10\right)}=\frac{11x\left(x+10\right)}{2x\left(x+10\right)}\)
<=> \(600x+3000=11x^2+110x\)
<=> \(11x^2+110x-600x-3000=0\)
<=> \(11x^2-490x-3000=0\)
<=> \(\left(x-50\right)\left(11x+60\right)=0\)
<=> \(\orbr{\begin{cases}x-50=0\\11x+60=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=50\\x=-\frac{60}{11}\end{cases}}}\)
Vì x > 0 => x = 50
Vậy vận tốc lúc đi của ô tô = 50km/h
Gọi vận tốc lúc đầu của ô tô là: x (km/giờ) (ĐK: x > 0)
Vận tốc lúc sau của ô tô là: x + 6 (km/giờ)
Thời gian dự định là: \(\frac{120}{x}\left(\text{giờ}\right)\)
\(10\text{ phút }=\frac{1}{6}\text{ giờ}\)
Sau 1 giờ ô tô đi đc: x (km)
Thời gian thực: \(1+\frac{1}{6}+\frac{120-x}{x+6}\left(\text{giờ}\right)\)
Ta có PT:
\(\frac{120}{2}=1+\frac{1}{6}+\frac{120-x}{x+6}\Leftrightarrow\frac{120}{x}=\frac{7}{6}+\frac{120-x}{x+6}\)
\(\Leftrightarrow\frac{120}{x}=\frac{7\left(x+6\right)+\left(120-x\right)6}{6\left(x+6\right)}\)
\(\Leftrightarrow120\left(x+6\right)=x\left(x+2\right)\)
\(\Leftrightarrow x^2+4x-4320=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=40\left(\text{TM}\right)\\x=90\left(\text{loại}\right)\end{cases}}\)
\(\Rightarrow\text{Vận tốc lúc đầu là: 48 km/giờ}\)
S=120km; v1,v2=hằng số; thời gian =(11h40-7h)-10'=4h30
S1=3/4S=90km
S2=1/4S=30km
v1=v2+10
-----------Giải----------
Lập hệ phương trình
\(\left\{\begin{matrix}v_1t_1=90\\v_2t_2=30\\v_1-v_2+10\\t_1+t_2=\frac{9}{2}\end{matrix}\right.\\ \)
Giải hệ phương trình(tự làm được chưa)
Gọi a là vận tốc xe oto
b là vận tốc xe máy ( a , b > 0 )
Thời gian xe ôto đi dc là 1h50' = \(\frac{11}{6}h\)
Thời gian xe máy đi là 1h
Quãng đường 2 xe đi là
\(\frac{11}{6}a+1b=150km\) (1)
Mỗi h oto đi nhanh hơn xe máy 20 km ( tức là thời gian đi chỉ là 1 h )
\(1a-1b=20km\) (2)
Từ (1) và (2) ta đc hệ pt sau
\(\hept{\begin{cases}\frac{11}{6}a-b=150\\a-b=20\end{cases}\Leftrightarrow\hept{\begin{cases}a=60\\b=40\end{cases}}}\)
Vậy vận tốc xe oto đi đc là 60 km/h
Vận tốc xe máy di đc là 40 km/h
CHÚC BN HX TỐT !! :))